Abstract:
A ball and socket joint (1) which is constructed as a counter track joint and which includes an inner hub (4) in which first outer grooves (16) and second outer grooves (17) are arranged in an alternating and distributed manner around the axis (9) on the outer surface of the inner hub. An annular cage (5) which is guided on the inner hub (4) is arranged between the inner hub (4) and an outer hub. Insertion surfaces (24, 25) are provided, which extend from the driven-side end, which have an undercut free design, and which extend toward the drive-side end.
Abstract:
An Rzeppa joint 1 comprises an inner hub 4, an outer hub 7 and a cage 5, which is guided between the two and which holds a number of balls 6 inside radial openings 8. The aim of the invention is to facilitate the assembly of the Rzeppa joint 1. To this end, the inner hub 4 is provided with a first element 10a, 10b and with a second element 11a, 11b that are located, in essence, one behind the other along the inner hub axis 4.
Abstract:
A method for producing a joint connection for torque-transmitting connection of a component (1) provided with spur gear teeth (13) with a constant velocity joint (2) provided with corresponding spur gear teeth (11). The spur gear teeth can be brought into interengagement by applying an axial engaging force and have flanks (25) that contact each other as functional surfaces. The invention also relates to a joint connection of the aforementioned type.
Abstract:
A homokinetic joint includes an outer hub having outer running tracks, an inner hub having inner running tracks, balls which are guided in pairs consisting of an outer running track and an inner running track and a cage having cage windows, in which the balls are accommodated. The homokinetic joint further includes a sleeve that is firmly connected with the inner hub and disposed coaxial to it and sealing means having an accommodation part that is connected with the outer hub so as to rotate with it. The sealing means have a sealing membrane firmly connected with the outer hub by means of an outer collar, and connected with the sleeve by means of an inner collar, forming a seal, and having a securing ring for fixing the inner collar in place on the sleeve. The sleeve has a circumferential annular groove, into which the sealing membrane engages with an inner annular bead that is formed on.
Abstract:
A ball-and-socket joint comprising an inner hub (1) and an outer hub (6) inside which tracks are disposed that are associated with each other in pairs. At least one ball is arranged in each track in order to transmit torque between the inner hub and the outer hub. The ball-and-socket joint further includes at least one diaphragm which seals the outer hub with respect to a joining element that can be connected in a torsion-proof manner to the inner hub. The outer hub is provided with a metallic interior element encompassing the tracks, a dampening element which embraces the interior element in at least some areas, and a cap that embraces the damping element in at least some areas in order to connect the outer hub to a driving part or a part to be driven. The damping element is made of a material having a modulus of elasticity lower than the modulus of elasticity of the metallic material of the interior element and/or the cap of the outer hub while being greater than the modulus of elasticity of the diaphragm.
Abstract:
A rolling-sliding unit, particularly for a jointed shaft, including a profiled sleeve (4) having outer raceways on an interior surface thereof; a journal (5) which is displaceable in the profiled sleeve (4) and which has inner raceways on an exterior surface thereof, and balls (9) in the raceways between the profiled sleeve and the journal for transmitting torque. A cover is provided on the journal of the rolling-sliding unit and an elastic element is arranged between the profiled sleeve and the journal of the rolling-sliding unit. A jointed shaft comprising a rolling-sliding unit of the described type also is described.
Abstract:
An opposed path joint comprising an inner hub, which is provided with first inner grooves and second inner grooves, and comprising an outer hub, which is provided with first outer grooves and second outer grooves that respectively form a pair with the first and second inner grooves. The opposed path joint also comprises an annular cage, which is placed between the inner hub and the outer hub and which has a radial openings whose number corresponds to that of the groove pairs. Balls that engage inside the grooves are guided inside these radial openings. According to the invention, the outer hub of the opposed path joint is a single-piece closed ring, in which the outer grooves are formed without cutting. Alternatively, the outer hub has at least two elements that are located one behind the other on the outer hub axis and, together, center the cage.
Abstract:
A constant velocity joint having an inner hub and an outer hub (1) in which races or tracks (3) associated with one another in pairs are provided and with balls received in respective pairs of races or tracks for transmitting torque. The constant velocity joint is further provided with at least one joint connector (2) which, when the joint is assembled, is connected in a rotationally fixed manner to one of the hubs (1) by mating profile members (6, 7) in order to transmit torque.
Abstract:
A connecting arrangement for connecting, for example, two components of a jointed shaft via a securing ring, and a jointed shaft including a connecting arrangement of this type.
Abstract:
A displacement unit comprising a tubular outer part on an inner surface of which outer paths are provided. An inner part displaceable in the tubular outer part in axial direction, on whose exterior surface inner paths are provided and a plurality of balls guided in a cage, the balls respectively located in outer and inner paths that are associated with each other in pairs. The tubular outer part and/or the inner part provided with cage guide paths between at least some of the paths for axial guiding the cage. A quantity of the cage guide paths is smaller than the quantity of pairs of paths formed by the outer and inner paths. The cage may comprise a plurality of integral guide path protrusions that engage the cage guide paths.