Abstract:
A control system for a gas turbine includes a processor. The processor configured to access data indicative of environmental conditions of a location of the gas turbine. The processor is configured to predict an occurrence of an event associated with the gas turbine based on the environmental conditions, wherein the event comprises a change in operation of the gas turbine due to the environmental conditions. The processor is configured to send a signal indicating the occurrence of the event to an electronic device.
Abstract:
Methods and systems for imparting corrosion resistance to gas turbine engines are disclosed. Existing and/or supplemental piping is connected to existing compressor section air extraction piping and turbine section cooling air piping to supply water and anti-corrosion agents into areas of the gas turbine engine not ordinarily and/or directly accessible by injection of cleaning agents into the bellmouth of the turbine alone and/or repair methods. An anti-corrosion mixture is selectively supplied as an aqueous solution to the compressor and/or the turbine sections of the gas turbine engine to coat the gas turbine engine components therein with a metal passivation coating which mitigates corrosion in the gas turbine engine.
Abstract:
Various embodiments include a leak detection system for a turbine compartment. In some embodiments, the leak detection system includes: a tracer fluid system fluidly connected with the turbine compartment, the tracer fluid system configured to provide an optically detectable fluid to a fluid supply of the turbine compartment; an optical detection system operably connected to the turbine compartment, the optical detection system configured to detect the presence of the optically detectable fluid in at least one location of the turbine compartment; and a control system operably connected to the tracer fluid system and the optical detection system, the control system configured to obtain data about the presence of the optically detectable fluid in the at least one location, and provide an indicator indicating a potential leak location based upon the data about the presence of the optically detectable fluid in the at least one location.
Abstract:
A power plant includes a first gas turbine and a second gas turbine. The first gas turbine includes a turbine extraction port that is in fluid communication with a hot gas path of the turbine and an exhaust duct that receives exhaust gas from the turbine outlet. The power plant further includes a first gas cooler having a primary inlet fluidly coupled to the turbine extraction port, a secondary inlet fluidly coupled to a coolant supply system and an outlet in fluid communication with the exhaust duct. The first gas cooler provides a cooled combustion gas to the exhaust duct which mixes with the exhaust gas to provide an exhaust gas mixture to a first heat exchanger downstream from the exhaust duct. At least one of a compressor and a turbine of the second gas turbine are in fluid communication with the outlet of the first gas cooler.
Abstract:
A power plant includes a compressor, a combustor downstream from the compressor and a turbine disposed downstream from the combustor. The compressor includes a compressor extraction port. The turbine includes a turbine extraction port that is in fluid communication with a hot gas path of the turbine and which provides a flow path for a stream of combustion gas to flow out of the turbine. An exhaust duct is disposed downstream from the turbine and receives exhaust gas from the turbine. An ejector coupled to the turbine extraction port and to the compressor extraction port cools the stream of combustion gas upstream from the exhaust duct. The cooled combustion gas flows into the exhaust duct at a higher temperature than the exhaust gas and mixes with the exhaust gas within the exhaust duct to provide a heated exhaust gas mixture to a heat exchanger downstream from the exhaust duct.
Abstract:
A power plant includes a first gas turbine and a second gas turbine. The first gas turbine includes a turbine extraction port that is in fluid communication with a hot gas path of the turbine and an exhaust duct that receives exhaust gas from the turbine outlet. The power plant further includes a first gas cooler having a primary inlet fluidly coupled to the turbine extraction port, a secondary inlet fluidly coupled to a coolant supply system and an outlet in fluid communication with the exhaust duct. The first gas cooler provides a cooled combustion gas to the exhaust duct which mixes with the exhaust gas to provide an exhaust gas mixture to a first heat exchanger downstream from the exhaust duct. The first gas cooler is also in fluid communication with a combustor of the second gas turbine.
Abstract:
A power plant includes an exhaust duct that receives an exhaust gas from an outlet of the turbine outlet and an ejector having a primary inlet fluidly coupled to a compressor extraction port. The ejector receives a stream of compressed air from the compressor via the compressor extraction port. The power plant further includes a static mixer having a primary inlet fluidly coupled to a turbine extraction port, a secondary inlet fluidly coupled to an outlet of the ejector and an outlet that is in fluid communication with the exhaust duct. A stream of combustion gas flows from a hot gas path of the turbine and into the inlet of the static mixer via the turbine extraction port. The static mixer receives a stream of cooled compressed air from the ejector to cool the stream of combustion gas upstream from the exhaust duct. The cooled combustion gas mixes with the exhaust gas within the exhaust duct to provide a heated exhaust gas mixture to a heat exchanger.
Abstract:
A turbomachine includes a compressor configured to compress air received at an intake portion to form a compressed airflow that exits into an outlet portion. A combustor is operably connected with the compressor, and receives the compressed airflow. A turbine is operably connected with the combustor, and receives combustion gas flow from the combustor. The turbine has a plurality of wheels and a plurality of buckets, and the turbine receives compressor bleed off air to cool at least one of the wheels. A cooling system is operatively connected to the turbine, and includes a plurality of heat pipes attached to or embedded within at least one of the wheels. The compressor bleed off air is configured to impinge onto at least one of the wheels or the heat pipes. The heat pipes and the compressor bleed off air are configured to cool the wheels.
Abstract:
A turbomachine includes a compressor configured to compress air received at an intake portion to form a compressed airflow that exits into an outlet portion. A combustor is operably connected with the compressor, and the combustor receives the compressed airflow. A turbine is operably connected with the combustor. The turbine receives combustion gas flow from the combustor. The compressor has a compressor casing. A cooling system is operatively connected to the compressor casing. The cooling system includes a plurality of heat pipes attached to and in thermal communication with the compressor casing. The plurality of heat pipes are operatively connected to one or more manifolds. The plurality of heat pipes and the one or more manifolds are configured to transfer heat from the compressor casing to a plurality of heat exchangers.
Abstract:
A power generation system includes: a first gas turbine system including a first turbine component, a first integral compressor and a first combustor to which air from the first integral compressor and fuel are supplied, the first combustor arranged to supply hot combustion gases to the first turbine component, and the first integral compressor having a flow capacity greater than an intake capacity of the first combustor and/or the first gas turbine component, creating an excess air flow. A second gas turbine system may include similar components to the first except but without excess capacity in its compressor. A control valve system controls flow of the excess air flow from the first gas turbine system to the second gas turbine system. A heat exchanger may be coupled to the excess air flow path for exchanging heat with the excess air flow.