Abstract:
A power generation system may include a gas turbine system including a turbine component, an integral compressor and a combustor to which air from the integral compressor and fuel are supplied. The combustor is arranged to supply hot combustion gases to the turbine component, and the integral compressor has a flow capacity greater than an intake capacity of the combustor and/or the turbine component, creating an excess air flow. A first control valve system controls flow of the excess air flow along an excess air flow path to an exhaust of the turbine component. An eductor positioned in the excess air flow path uses the excess air flow as a motive force to augment the excess air flow with additional gas, creating an augmented excess gas flow.
Abstract:
A power generation system may include a generator, and a gas turbine system for powering the generator, the gas turbine system including a turbine component, an integral compressor and a combustor to which air from the integral compressor and fuel are supplied, the combustor arranged to supply hot combustion gases to the turbine component, and the integral compressor having a flow capacity greater than an intake capacity of at least one of the combustor and the turbine component, creating an excess air flow. A turbo-expander may also power the generator. A first control valve control flow of the excess air flow along an excess air flow path to an inlet of the turbo-expander. An educator may be positioned in the excess air flow path for using the excess air flow as a motive force to augment the excess air flow with additional air. A discharge of the turbo-expander is supplied to an exhaust of the turbine component for an HRSG.
Abstract:
A power generation system may include a gas turbine system including a first turbine component, an integral compressor and a combustor to which air from the integral compressor and fuel are supplied. The combustor is arranged to supply hot combustion gases to the turbine component, and the integral compressor has a flow capacity greater than an intake capacity of the combustor and/or the turbine component, creating an excess air flow. A first control valve system controls flow of the excess air flow along an excess air flow path to a process air demand. An eductor positioned in the excess air flow path uses the excess air flow as a motive force to augment the excess air flow with additional air, creating an augmented excess air flow.
Abstract:
A power generation system may include: a first gas turbine system including a first turbine component, a first integral compressor and a first combustor to which air from the first integral compressor and fuel are supplied. The first integral compressor has a flow capacity greater than an intake capacity of the first combustor and/or the first turbine component, creating an excess air flow. A second gas turbine system may include similar components to the first except but without excess capacity in its compressor. A turbo-expander may be operatively coupled to the second gas turbine system. Control valves may control flow of the excess air flow from the first gas turbine system to at least one of the second gas turbine system and the turbo-expander, and flow of a discharge of the turbo-expander to an exhaust of at least one of the first turbine component and the second turbine component.
Abstract:
Disclosed herein are methods and systems for treating a surface, such as a gas turbine surface, with a filming treatment. The system includes a storage tank configured to contain a filming agent, a plurality of nozzles, and supply conduit coupled to the storage tank on a first end and the plurality of nozzles on a second end, wherein the system is configured to deliver the filming agent from the storage tank and to discharge the filming agent through the plurality of nozzles and the filming agent includes siloxane, fluorosilane, mercapto silane, amino silane, tetraethyl orthosilicate, succinic anhydride silane, or a combination including at least one of the foregoing.
Abstract:
Various embodiments include a leak detection system for a turbine compartment. In some embodiments, the leak detection system includes: a tracer fluid system fluidly connected with the turbine compartment, the tracer fluid system configured to provide an optically detectable fluid to a fluid supply of the turbine compartment; an optical detection system operably connected to the turbine compartment, the optical detection system configured to detect the presence of the optically detectable fluid in at least one location of the turbine compartment; and a control system operably connected to the tracer fluid system and the optical detection system, the control system configured to obtain data about the presence of the optically detectable fluid in the at least one location, and provide an indicator indicating a potential leak location based upon the data about the presence of the optically detectable fluid in the at least one location.
Abstract:
Systems and methods for de-icing an inlet screen and dehumidifying an inlet air filter in a gas turbine engine are disclosed herein. In one embodiment, a method may include determining a current inlet screen temperature. The method also may include determining a desired inlet screen temperature. If the current inlet screen temperature is less than the desired inlet screen temperature, the method may further include determining a first amount of gas turbine compartment ventilation discharge air necessary to achieve the desired inlet screen temperature, extracting the first amount of gas turbine compartment ventilation discharge air, and conveying the first amount of gas turbine compartment ventilation discharge air to the inlet screen.
Abstract:
The present application provides a gas turbine engine for low turndown operations. The gas turbine engine may include a compressor with a compressor bleed air flow, a turbine compartment with a turbine compartment air flow, a turbine, and an eductor. The eductor blends the compressor bleed air flow and the turbine compartment air flow into a blended air flow for use in cooling the turbine.
Abstract:
The present application provides a gas turbine engine for low turndown operations. The gas turbine engine may include a compressor with a compressor bleed air flow, a turbine, and a compressor bleed air flow manifold. The compressor bleed air manifold directs a variable portion of the compressor bleed air flow to the turbine.
Abstract:
A gas turbine online wash control system may obtain geospatial data for an area in which a gas turbine is located. The gas turbine online wash control system may determine wash control parameters for the gas turbine based on the geospatial data.