Abstract:
A method and system for providing unified access to data for multiple computing devices includes a system that associates multiple computing devices with a user of an information management system, assigns information management policies to data from the multiple computing devices within the information management system, and collects multiple data objects from the multiple computers. The system may generate a preview version of each collected data object, and provide at least one preview version of a collected data object to a computing device associated with the user. The system may also generate indexing information for each collected data object and distribute the indexing information with the preview version of the data object.
Abstract:
A method and system for restoring a computing environment from a secondary data store, and facilitating such restoration, is described. In some examples, the system copies the configuration parameters of a computing environment, such as a file system, as well as the data within the file system, and transfers the copies to secondary storage for later restoration. For example, the system may generate an xml file of the configuration parameters of the computing environment when a backup operation of the computing environment is performed, and store the xml file along with copies of the data from the computing environment in secondary storage.
Abstract:
A method and system for restoring a computing environment from a secondary data store, and facilitating such restoration, is described. In some examples, the system copies the configuration parameters of a computing environment, such as a file system, as well as the data within the file system, and transfers the copies to secondary storage for later restoration. For example, the system may generate an xml file of the configuration parameters of the computing environment when a backup operation of the computing environment is performed, and store the xml file along with copies of the data from the computing environment in secondary storage.
Abstract:
A data storage system allows a user to search a secondary copy such as a back up, archive, or snapshot and receive an abbreviated version of the secondary copy of the file system as a result of the search. The abbreviated version of the secondary copy of the file system may include metadata such as a listing of secondary copy data that correspond with a search term or other filtering criteria provided by the user. An operating system of the user's computing device may mount the abbreviated version so that it can be displayed within a view of the file system of the computing device. Once a user selects one or more desired data objects listed in the abbreviated version, the selected actual one or more data objects are retrieved from secondary storage.
Abstract:
A method and system for utilizing snapshots to provide copies of a database or other application or large data structure to computing devices receives a request for access to a copy of a database, and performs a snapshot of a storage volume containing the requested database. The system then clones the snapshot and mounts the snapshot to a computing device, thus enabling the computing device to access a copy of the database. In some examples, the system automatically updates copies of a database on a scheduled basis (e.g., daily or weekly basis) to refresh a database regularly.
Abstract:
A data storage system restores selected virtual machine files from a block-level backup without restoring blocks associated with files other than the selected virtual machine file. The system identifies the one or more blocks associated with a selected file from a file index that is created during the block-level backup of the virtual machine by accessing the file allocation tables of the underlying host system and associating the locations of the blocks with the file information from the file allocation table for the virtual files of the virtual machine. The system further restores the identified blocks without restoring blocks associated with files other than the selected file and/or file version, recreates the selected file from the restored blocks, and presents the restored file to the user.
Abstract:
The data storage system according to certain aspects can implement table level database restore. Table level database restore may refer to restoring a database table and its related data without restoring the entire database. The data storage system may use table metadata index to implement table level restore. A table metadata index may be created for each table, e.g., during a backup of the database. The table metadata index for a table can include any type of information for restoring the table and its related data. Some examples of the type of information included in the table metadata index include the following: container for the table, table backup location, system data, table index, table relationships, etc. Table metadata index can make the restoring of tables fast and efficient by packaging information that can be used to restore a table and its related data in an easily accessible manner.
Abstract:
Systems and methods are provided which perform a file level restore by utilizing existing operating system components (e.g., file system drivers) that are natively installed on the target computing device. These components can be used to mount and/or interpret a secondary copy of the file system. For instance, the system can instantiate an interface object (e.g., a device node such as a pseudo device, device file or special file) on the target client which includes file system metadata corresponding to the backed up version of the file system. The interface provides a mechanism for the operating system to mount the secondary copy and perform file level access on the secondary copy, e.g., to restore one or more selected files.
Abstract:
Software, firmware, and systems are described herein that migrate functionality of a source physical computing device to a destination virtual machine. A non-production copy of data associated with a source physical computing device is created. A configuration of the source physical computing device is determined. A configuration for a destination virtual machine is determined based at least in part on the configuration of the source physical computing device. The destination virtual machine is provided access to data and metadata associated with the source physical computing device using the non-production copy of data associated with the source physical computing device.
Abstract:
Software, firmware, and systems are described herein that migrate functionality of a source physical computing device to a destination virtual machine. A non-production copy of data associated with a source physical computing device is created. A configuration of the source physical computing device is determined. A configuration for a destination virtual machine is determined based at least in part on the configuration of the source physical computing device. The destination virtual machine is provided access to data and metadata associated with the source physical computing device using the non-production copy of data associated with the source physical computing device.