Abstract:
A measuring system comprises: a measuring transducer, through which medium flows and which produces oscillatory signals dependent on medium viscosity and/or a Reynolds number of the flowing medium; and transmitter electronics for driving the measuring transducer and for evaluating oscillatory signals. The measuring transducer includes: four, mutually spaced, flow openings; an outlet-side flow divider with four, mutually spaced, flow openings; four, mutually parallel, straight, measuring tubes for conveying flowing medium, connected to the flow dividers electromechanical exciter mechanism. The transmitter electronics feeds, by means of an electrical driver signal supplied to the exciter mechanism, electrical excitation power into the exciter mechanism, while the exciter mechanism converts electrical excitation power at least partially into torsional oscillations of the first measuring tube, opposite-equal torsional oscillations of the second measuring tube, as well as into torsional oscillations of the third measuring tube, opposite-equal torsional oscillations of the fourth measuring tube.
Abstract:
A measuring transducer comprises: a transducer housing, an inlet-side, flow divider having exactly four spaced flow openings and an outlet-side, housing end by means of an outlet-side, flow divider having exactly four spaced flow openings; as well as exactly four, straight, measuring tubes connected to the flow dividers. Each of the four measuring tubes opens with an inlet-side, measuring tube end into one the flow openings and with an outlet-side, measuring tube end into one the flow openings of the outlet-side, flow divider. Additionally, the measuring transducer includes an electromechanical exciter mechanism, wherein the exciter mechanism is embodied in such a manner, that, therewith, the measuring tubes are excitable pairwise to execute opposite phase bending oscillations in, in each case, a shared imaginary plane of oscillation. The measuring transducer is suitable, especially, for measuring a density and/or a mass flow rate of a medium flowing in a pipeline, at least at times, with a mass flow rate of more than 2200 t/h.
Abstract:
A measuring transducer comprising: a transducer housing, of which an inlet-side, housing end is formed by means of an inlet-side, flow divider having exactly four flow openings spaced, in each case, from one another and an outlet-side, housing end is formed by means of an outlet-side, flow divider having exactly four flow openings spaced, in each case, from one another; as well as exactly four, straight, measuring tubes connected to the flow dividers for guiding flowing medium along flow paths connected in parallel. The measuring transducer includes an electromechanical exciter mechanism for producing and/or maintaining mechanical oscillations of the four measuring tubes. The measuring tubes are excitable pairwise to execute opposite phase bending oscillations in, in each case, a shared imaginary plane of oscillation.
Abstract:
The measuring system comprises: a measuring transducer, through which medium flows during operation and which serves for producing oscillatory signals dependent on a viscosity of the flowing medium and/or a Reynolds number of the flowing medium; transmitter electronics for driven the measuring transducer and for evaluating oscillatory signals delivered by the measuring transducer. The measuring transducer includes: an inlet-side flow divider; an outlet-side flow divider; at least two, mutually parallel, straight, measuring tubes, connected to the flow dividers; as well as an electromechanical exciter mechanism for exciting and maintaining mechanical oscillations of the at least two measuring tubes. Each of the at least two measuring tubes opens with an inlet-side measuring tube end into a flow opening and with an outlet-side. The transmitter electronics feeds, by means of an electrical driver signal supplied to the exciter mechanism, electrical excitation power into the exciter mechanism, while the exciter mechanism converts electrical excitation power at least partially into opposite-equal torsional oscillations of the at least two measuring tubes.
Abstract:
A measuring tube, a measuring system and a method for determining and/or monitoring flow through a measuring tube, comprising a measuring tube, on which ultrasonic transducers are releasably placeable. The ultrasonic transducers transmit and/or receive ultrasonic signals, which pass through the measuring tube approximately coaxially to the measuring tube axis.
Abstract:
A measuring system precisely for measuring the density of a medium flowing in a pipe line. The measuring system comprises a temperature sensor and a pressure sensor. Both sensors communicate with measuring electronics of the system. The measuring electronics are operable to provide, based on temperature measurement, pressure measurement, and a numerical compensation factor a density measured-value, representing, a density of the flowing medium at a virtual density measuring point. The compensation factor corresponds with a locational variability of at least one thermodynamic variable of the medium, occurring along the flow axis of the measuring system and/or a locational variability of the Reynolds number of the flowing medium along the flow axis of the measuring system.
Abstract:
In order to place a medium flowing through a magneto-inductive flow measuring device at a reference potential, a grounding gasket is arranged, in each case, between flared end regions of the measuring tube, or measuring tube flanges secured on the measuring tube, and pipeline flanges connected with the pipeline. The grounding gasket comprises a conductive support material. The support material is provided with an electrically conductive, chemically resistant, plastics coating, at least in regions in contact in the installed state with the medium, the flared end regions, or the measuring tube flanges, as the case may be, and the pipeline flanges.
Abstract:
A method for the manufacture of a measuring tube of a flow measuring device, and to a flow measuring device. The measuring tube has a lumen for accommodating a flowing, measured material. The method comprises: introducing at least one, essentially cylindrical, hollow body into a support tube; joining the essentially cylindrical, hollow body to the support tube by mechanically deforming at least one portion of the essentially cylindrical, hollow body; and embedding the hollow body joined to the support tube in an electrically and/or chemically insulating, isolating material; wherein the lumen of the measuring tube is formed by the electrically and/or chemically insulating, isolating material.
Abstract:
A measuring system comprises: a measuring transducer for producing oscillation measurement signals; and transmitter electronics electrically coupled with the measuring transducer for activating the measuring transducer and for evaluating oscillation measurement signals delivered by the measuring transducer. The measuring transducer includes: a transducer housing, a first housing end housing end, first flow divider having exactly four flow openings, an outlet-side, second housing end formed by means of an outlet-side, second flow divider having exactly four flow openings mutually spaced from one another, and a tube arrangement having exactly four, straight, measuring tubes forming flow paths arranged for parallel flow and connected to the flow dividers, an electromechanical exciter mechanism for producing and/or maintaining mechanical oscillations of the four measuring tubes and a vibration sensor arrangement reacting to vibrations of the measuring tubes.
Abstract:
An apparatus for measuring volume- or mass-flow of a medium in a pipeline. Included is a measuring tube, through which the medium flows in the direction of the longitudinal axis of the measuring tube; a magnet system, which is embodied in such a manner, that it produces a magnetic field passing through the measuring tube essentially transversely to the longitudinal axis of the measuring tube; at least one measuring electrode coupled with the medium, which is arranged in a bore in the wall of the measuring tube in a region lying essentially perpendicular to the magnetic field. The measuring electrode has an elongated electrode shaft having a first widened end region, which is so dimensioned, that its diameter larger is than the diameter of the bore in the wall of the measuring tube, in which the measuring electrode is placed; and a control/evaluation unit, which, on the basis of a measurement voltage induced in the at least one measuring electrode, delivers information concerning volume- or mass-flow of the medium in the measuring tube. In the opposing, second, end region of the electrode shaft of the measuring electrode, at least one radial recess or at least one radial protrusion is arranged. Furthermore, a binding-element is provided, which is so embodied, that it fixes the measuring electrode in the bore of the measuring tube in the axial direction by engaging with the at least one radial recess or protrusion.