Abstract:
Methods, systems, and devices are described for wireless communications. The described techniques include separation of communication resources into resource sets based on data service sets for multiple base stations operating over a carrier of a shared spectrum. The base stations may use synchronized communication time resources. Each data service set may include one or more QoS types and/or communication services. Listen before talk (LBT) parameters for contention procedures performed in different resource sets may be different. A UE configured for communication over the carrier may employ a resource set based discontinuous reception (DRX) mode where a sleep mode is entered for resource sets not associated with active communications by the UE. Channel state information (CSI) reporting may be separated by resource sets for the carrier.
Abstract:
Techniques for performing listen before talk (LBT) procedures in networks having multiple channels within a shared radio frequency spectrum band are provided. These techniques may include determining a contention window size for a first LBT procedure to access a first channel of a shared radio frequency spectrum band, which may then be applied as the contention window size for a second LBT procedure to access a second channel of the shared radio frequency spectrum band. The contention window size may be determined based at least in part on one or more of a service priority or a channel type for data to be transmitted using the first channel. Performing the first LBT procedure may include determining that a recipient base station has reserved the first channel and the second channel, and performing the second LBT procedure for the second channel.
Abstract:
The present disclosure, for example, relates to one or more techniques for indicating a frame format for transmissions using unlicensed radio frequency spectrum bands. A UE may receive, from a base station, a frame format indicator associated with a transmission opportunity for transmissions in an unlicensed radio frequency spectrum band. The UE may determine a time-division duplexing (TDD) configuration for the transmission opportunity based at least in part on the frame format indicator.
Abstract:
Control flow enhancement for LTE-U operation. Aspects include enhancements to control flow processing for floating TTI operation for unlicensed cells including ePDCCH processing, aperiodic CSI reporting, DRX operation, and extended TTIs at the end of a transmission burst. The described aspects also include enhancements for reference signal configuration for unlicensed cells, processing of joint grants for multiple unlicensed cells, ePDCCH processing for partial subframes, and multi-channel DRS operation.
Abstract:
Techniques are described for wireless communication. A first method includes receiving a semi-static partial subframe configuration and a corresponding partial subframe identifier; receiving a grant for a partial subframe, the grant identifying the partial subframe identifier; and receiving data scheduled for the partial subframe over a shared radio frequency spectrum band based at least in part on the semi-static partial subframe configuration. A second method includes monitoring a plurality of symbol periods for at least one channel reservation signal transmitted over a shared radio frequency spectrum band, where the at least one channel reservation signal is encoded based at least in part on each symbol period of the plurality of symbol periods; and receiving a downlink transmission over the shared radio frequency spectrum band, where the downlink transmission follows the plurality of channel reservation signals.
Abstract:
Techniques are described for wireless communication. A first method includes contending for access to a first channel of a radio frequency spectrum, and transmitting, upon winning contention for access to the first channel, a first channel reservation indication. The contending may be performed by a first node operating according to a first radio access technology. The first channel reservation indication may be understood by a second node operating according to a second radio access technology.
Abstract:
Techniques are described for wireless communication. A first method includes winning a contention for access to an unlicensed radio frequency spectrum band, and transmitting at least a portion of a channel usage beacon signal (CUBS) over the unlicensed radio frequency spectrum band. The at least portion of the CUBS is transmitted in a number of frequency interlaces of the unlicensed radio frequency spectrum band. A second method includes winning a contention for access to an unlicensed radio frequency spectrum band; determining whether the contention is won within a threshold time before a next symbol period boundary; and transmitting at least a portion of a CUBS over the unlicensed radio frequency spectrum band. The at least portion of the CUBS is transmitted during a preamble including a fractional period of a first symbol period. The at least portion of the CUBS may be based at least in part on the determining.
Abstract:
The present disclosure, for example, relates to one or more techniques for scaling the bandwidth of a carrier. Available sub-channels of an unlicensed radio frequency spectrum band may be determined, and the available sub-channels may be included in the carrier. The available sub-channels may be adjacent or non-adjacent sub-channels. The bandwidth of the carrier may be determined according to which sub-channels are included in the carrier. In this way, the bandwidth of the carrier may be scaled according to the available sub-channels in the unlicensed radio frequency spectrum band.
Abstract:
Channel state information (CSI) feedback in long term evolution (LTE) and LTE-Advanced (LTE-A) networks including unlicensed spectrum is disclosed in which a base station obtains clear channel assessment (CCA) result information from neighboring base stations, either directly or by determining such results from measurement or reports from user equipment (UE) served by the base station. The base station may then generate control signaling based on the CCA result information for transmission to the one or more UEs served by the base station.
Abstract:
Methods and apparatus for wireless communication are described. A method may include receiving at a user equipment (UE) a number of allocated interlaces for an uplink transmission over a shared spectrum, each of which may include a plurality of non-contiguous resource blocks (RB) of the shared spectrum. In some cases, the number of allocated interlaces is unsupported by joint interlace precoding hardware of the UE and the allocated interlaces may be partitioned into subsets of interlaces which may be a size supported by the joint interlace precoding hardware. Reference signals may be generated for the RBs of the allocated interlaces according to a reference signal sequence based on an ordering of the RBs for the allocated interlaces within the shared spectrum.