Abstract:
A method for self synchronization by a base station is described. Network information is sent to a wireless communication device. The network information indicates a first time period. The first time period is a period of silence by the base station. Synchronization signals are monitored during the first time period. Monitoring synchronization signals includes not transmitting.
Abstract:
A method in a mobile terminal for estimating a position of the mobile terminal includes: receiving an expected measurement map indicative of an expected measurement of a parameter by the mobile terminal; receiving parameters of a matrix corresponding to the expected measurement map; capturing, by the mobile terminal, actual measurements of the parameter for a plurality of communication devices; and utilizing the received parameters and actual measurements to estimate the position of the mobile terminal, where each of the actual measurements and the expected measurement map comprise values indicative of a delay in a communication path between the mobile terminal and one or more of the plurality of communication devices.
Abstract:
Techniques for supporting communication in a heterogeneous network are described. In an aspect, communication in a dominant interference scenario may be supported by reserving subframes for a weaker base station observing high interference from a strong interfering base station. In another aspect, interference due to a first reference signal from a first station (e.g., a base station) may be mitigated by canceling the interference at a second station (e.g., a UE) or by selecting different resources for sending a second reference signal by the second station (e.g., another base station) to avoid collision with the first reference signal. In yet another aspect, a relay may transmit in an MBSFN mode in subframes that it listens to a macro base station and in a regular mode in subframes that it transmits to UEs. In yet another aspect, a station may transmit more TDM control symbols than a dominant interferer.
Abstract:
Systems and methodologies are described herein that facilitate interference measurement and reporting in a network multiple-in-multiple-out (N-MIMO) communication system. As described herein, a network device can measure and report interference corresponding to network nodes outside a designated set of nodes that can cooperatively serve the device. Respective interference reports can additionally identify dominant interfering nodes, correlation between transmit antennas of respective nodes, or the like. Subsequently, respective interference reports can be combined with per-node channel information to manage coordination and scheduling across respective network nodes. As further described herein, interference from a network node can be measured by observing reference and/or synchronization signals from the network node. To aid such observation, respective non-interfering network nodes can define null pilot intervals in which transmission is silenced or otherwise reduced. As additionally described herein, loading information broadcasted by respective interfering network nodes can be identified and utilized in connection with interference calculation.
Abstract:
Aspects describe a Highly Detectable Pilot that allows a mobile device to detect more base stations and, thus, can provide more accuracy in location estimate. A highly detectable pilot can be transmitted in a position in one or more data symbols that are not currently being utilized for transmission of data. In certain aspects, a transmitter may not transmit during other positions of the one or more data symbols. Transmission of the highly detectable pilot in two data symbols provide a receiver with more convergence time, however, it can take the receiver a longer amount of time to acquire an adequate number of pilots for a location estimate.