Abstract:
An external airbag includes: lateral edge bags in a pair that are deployed to extend upward along respective front pillars from lower ends of the respective front pillars, in front of the respective front pillars, the respective front pillars being disposed on both widthwise sides of a windshield of an automobile; and a posture holding member that couples upper ends of the lateral edge bags in the pair to each other.
Abstract:
A bumper assembly includes a bumper beam, an actuator, and a lower stiffener. The actuator includes a base mounted to the bumper beam, and a rod moveably engaged with the base along a vertical axis. The lower stiffener is fixed to the rod. Depending on pre-determined vehicle speeds, the lower stiffener moves from a deployed position to a retracted position based on pedestrian leg impact considerations and to reduce the likelihood of lower stiffener damage.
Abstract:
A shock absorber which can be easily attached and which can reduce the installation space is provided. The shock absorber in accordance with the present invention is characterized by including a front wall to receive shock, a rear wall opposing the front wall, and peripheral walls connecting peripheries of the front wall and the rear wall, and at least one attaching section to attach onto an attaching object is formed to be integral with the rear wall, and shock received by the front wall is propagated via the rear wall to the attaching object.
Abstract:
An energy absorption member coupled between a vehicle front fender and a vehicle side structural member providing peak impact force resistance and energy absorption during an impact force imposed on the front fender. The energy absorption member extends continuously along the length of the front fender opposed from the side structural member to provide constant load along the entire length of the front fender. The energy absorption member may be a foamed block, a vertical, or horizontal oriented honeycomb structure or spaced hollow crush lobes.
Abstract:
Vehicles incorporating load-transferring hood hinge members are disclosed. In one embodiment, a vehicle includes an A-pillar portion, an upper side member coupled to the A-pillar portion and extending forward from the A-pillar portion in a vehicle longitudinal direction, and a dash panel coupled to the A-pillar portion and extending in a vehicle lateral direction that is transverse to the vehicle longitudinal direction. The vehicle also includes a hood hinge member that is coupled to the upper side member and positioned forward of the A-pillar portion. The hood hinge member includes an attachment portion that is coupled to the upper side member, a flange member that extends upward from the attachment portion, a hood attachment opening passing through the flange member, and a rearward-projecting protrusion having a distal surface that is positioned transverse to the flange member.
Abstract:
A hood assembly is provided. The hood assembly includes an outer panel having an interior surface and a peripheral edge. The hood assembly further includes a frame mounted to the outer panel. The frame has a contoured section. The contoured section is spaced apart from the interior surface of the outer panel and adjacent a forward portion of the peripheral edge of the outer panel. The contoured section includes an opening disposed on the contoured section so as to facilitate a deformation of the outer panel from a top down load.
Abstract:
Aspects of the disclosure relate to adjusting a shear pin to minimize an impact force felt by an object in a collision with a vehicle. For example, one or more second computing devices may receive, from one or more first computing devices, information indicating that an impact with an object is imminent. In response to the received information, the second computing devices may determine a first shear force for a first shear pin, wherein the first shear force is a desired amount of shear force necessary to break the first shear pin. The second computing devices may send a triggering signal to activate an actuator prior to an impact with the identified impact target. The actuator, in response to receiving the triggering signal, may adjust the first shear pin in a first pinhole, so the first shear pin will break at the first shear force.
Abstract:
A bumper assembly for a motor vehicle comprising a cross member that extends transverse the motor vehicle, and has an open hat-shaped hollow profile with a rear-sided web and legs, extending from the web, wherein flanges extend from a free end of the legs in the vertical direction; and an opening pointing away from the motor vehicle, in the longitudinal direction. At least one closing plate is arranged allowing the opening to be completely closed in the vertical direction and arranged allowing a partial length of less than 50% of the length of the opening to be closed in the transverse direction; and that the flanges are offset from each other with an offset in the longitudinal direction; and that the cross member has a varying cross section over its length, wherein a central region is offset upwards from the end regions with a height offset to the vertical direction.
Abstract:
The present invention relates to an airbag sensor module which detects the amount of deformation of a car body so as to detect a collision during a car collision and which is attached to the car body in an adhesive manner, and the car body which is integrated with the airbag sensor module. One embodiment of the present application discloses the airbag sensor module mounted in an adhesive manner, comprising: a main substrate which is attached to the car body in an adhesive manner; and a collision detection sensor section which is formed on the main substrate, and which detects whether the car body collides by including a strain sensor for measuring the amount of deformation by being deformed along with the deformation of the car body caused by a collision thereof.
Abstract:
A vehicle hood structure includes a hood lock reinforcement that is provided on a vehicle lower side of an inner panel that forms a hood, and to which a striker is attached on a front side in a vehicle longitudinal direction. The hood lock reinforcement includes a step-shaped rear wall portion that is formed farther to a rear side in the vehicle longitudinal direction than the striker, on the hood lock reinforcement, and in which a rear end portion in the vehicle longitudinal direction is arranged farther to a vehicle upper side than a front end portion in the vehicle longitudinal direction, and that includes at least four ridge lines that extend in a vehicle width direction, and that includes at least two leg portions that separate at least one of the ridge lines in the vehicle width direction.