Abstract:
This invention provides a method of, and an apparatus for, producing a near field optical head that can control a height of an optical aperture or a protuberance and an air bearing surface. A substrate and a protuberance formed on the substrate are covered with a shielding film. The shielding film is covered with an parent film for air bearing having a thickness greater than the sum of a height of the protuberance and a thickness of the shielding film. When the parent film for air bearing is etched, the shielding film covering the protuberance is exposed. Etching is stopped as soon as exposure of the shielding film is detected. Since detection of the exposure of the shielding film can be made electrically, for example, a height difference between the aperture and the surface of the air bearing can be controlled highly precisely.
Abstract:
An apparatus comprises a thin film metallic layer, a first dielectric layer arranged on a first side of said thin film metallic layer and having a first index of refraction, a second dielectric layer arranged on the opposite side of said thin film metallic layer from said first dielectric layer, a third dielectric layer arranged on the first side of the thin film metallic layer adjacent to the first dielectric layer and having a second index of refraction that is lower than the first index of refraction, and wherein the thin film metallic layer, the first dielectric layer and the third dielectric layer are arranged to focus plasmon waves induced at an interface between the thin film metallic layer and the third dielectric layer.
Abstract:
An optical recording medium includes a crystallizing layer for enhancing the crystallization of a phase change memory layer, an energy storage layer for aiding the state transformations of a phase change memory layer, and/or a modifying element for increasing absorption and contrast at short wavelengths. An optical data storage and retrieval system containing same. Also a light-plasmon coupling lens including an optically transparent substrate having a light incident surface and a light-plasmon coupling surface opposite the light incident surface. The light-plasmon coupling surface including at least a set of circular concentric peaks/valleys which form a Fourier sinusoidal pattern in the radial direction of the circular concentric peaks/valleys. A conformal layer of metal is deposited on the light-plasmon coupling surface of the substrate and has aperture at the center of thereof through which plasmons are transmitted.
Abstract:
An optical pickup device includes a feed screw to move an optical pickup having an objective lens radially on an optical disc, a sliding member provided for slidable movement in relation to the optical pickup, and connected to the optical pickup by a coil spring that forces a shutter in a direction of unmasking the objective lens, and a connection member that connects the feed screw and sliding member to each other. As the feed screw is rotated, the sliding member moves the optical pickup radially on the optical disc, and when the optical pickup has arrived at a position at the lead-in side of the optical disc, the sliding member is further slid against the force of the coil spring to move the shutter and mask the objective lens.
Abstract:
An optical pickup and driving method for an optical disk drive holding an optical disk includes a base, an object lens, and a slider supporting the object lens, where the object lens focuses a light on a recording surface of the optical disk. An optical head section includes the slider, where an air bearing floats the slider generated between the optical head section and the optical disk. Wire suspensions movably support the optical head section with respect to the base. A driving unit drives the optical head section in a tracking direction and a focusing direction. A latching unit selectively securely positions the optical head section at a predetermined distance away from the optical disk preventing the optical head section from colliding with the optical disk.
Abstract:
A high density readable only optical disc includes a substrate having pits with different lengths in accordance with unit information, wherein a depth of the pit increases as the pit length increases; and a mask layer that includes a metal oxide, or a mixture of fine metal particles and a dielectric material. The high density readable only optical disc may be used to read pits not greater than a reading resolution limit and to obtain an optimal CNR since a pit depth is varied depending on a pit length. Also, a method of the high density readable only optical disc may be used to prepare a high density readable only optical disc having an optimal pit depth in accordance with a pit length.
Abstract:
An optical recording head including a media heating device to write and read data to a heat sensitive optical media disk. The media heating device includes an optical energy resonant cavity that produces a high intensity near-field optical spot of subwavelength dimension. Optical energy is coupled into the resonant cavity through a waveguide that is placed proximate the cavity, and optical energy is coupled out of the cavity through an aperture that is placed proximate an antinode or post within the cavity. In reading data from the optical media, a photodetector is placed at the end of the waveguide. Optical energy emitted from the end of the waveguide is influenced by the reflectivity of the media data bit, and is interpreted as the data bit signal.
Abstract:
An insulated gate transistor has a semiconductor thin film having a first main surface and a second main surface, a first gate insulating film formed on the first main surface of the semiconductor thin film, a first conductive gate formed on the first gate insulating film, first and second confronting semiconductor regions of a first conductivity type insulated from the first conductive gate and disposed in contact with the semiconductor thin film, and a third semiconductor region of a second conductivity type opposite to the first conductivity type disposed in contact with the semiconductor thin film. A gate threshold voltage of the first conductive gate is controlled by a forward bias of the third semiconductor region with respect to one of the first and second semiconductor regions.
Abstract:
An optical pickup device and optical disc apparatus of the present invention include an optical element that prevents the incidence of light on unnecessary portions of the optical element so that stray light and noise are eliminated. The optical element include at least one substrate having a plurality of lens substrates that have embedded lenses made of a material with a higher refractive index than the at least one substrate. A shielding means limits the optical path so that incident light propagates only within a prescribed optical path formed on a light incidence-side or emission-side surface of one of the lens substrates. In addition, the shielding means is formed from an absorptive or reflective film placed in a region outside the prescribed optical path or through machining the region outside the prescribed optical path.
Abstract:
An anti-reflection coating layer is formed on the surface portion of a recording medium. This enables to obtain a margin for the air gap thickness change when recording/reproducing an information signal using the “near-field technique” as well as minimize a data loss caused by a collision. Furthermore, the present invention provides a film configuration which can easily be produced.