Abstract:
An article of manufacture including reinforcement material embedded in a phosphate cement composition is provided. The phosphate cement composition includes about 10 to 40 percent by weight calcium or magnesium oxide, about 10 to 40 percent by weight acid phosphate, and about 10 to 50 percent by weight vermiculite or perlite or mixture thereof.
Abstract:
A hydraulic cement comprising a calcium silicate and at least one phosphate compound. The phosphate compound is included in an amount sufficient to react a major portion of the calcium hydroxide that is produced during hydration of the cement to hydroxyapatite or other calcium phosphates. The phosphate compound is preferably a mono-calcium phosphate. The cement is useful in both bio-medical/dental and engineering applications. The calcium hydroxide is reacted by the phosphate to form hydroxiapatite or other calcium phosphate that is co-precipitated with the calcium silicate hydrate to form a composite-like structure on a nano-scale level. The reduced calcium hydroxide content in the set cement increases its strength and reduces its pH. The hydroxiapatite content and the reduced pH render the cement bio-active and suitable for use in medical and dental implants, for example, for replacement bone and tooth material. Due to its high strength, the cement may also be used for structural/engineering applications.
Abstract:
A method of producing a sheet-form material having an exposed solid surface comprises pre-mixing cement with at least one pozzolan to provide a cement/pozzolan mixture with a high pozzolan to cement ratio, adding to the cement/pozzolan mixture an aqueous solution comprised of water and a high range water reducer to produce a cement/pozzolan dough-like substance, adding and mixing a sufficient quantity of glass aggregate to said cement/pozzolan dough-like substance to produce a moldable composition, wherein, after adding and mixing in the glass aggregate, the pozzolan is present in the composition at about 5% to about 20% by weight, the cement is present in the composition at about 3% to about 20% by weight, and the aggregate glass is by weight a relatively high percentage of the composition. The moldable composition is placed into a mold and vibrated, and is allowed to cure.
Abstract:
A cementitious composition for high density, low porosity sheet-form building materials having solid surfaces is comprised of cement, pozzolans, and a high percentage of fine and/or coarse glass aggregate.
Abstract:
The present invention provides a composition for treatment, the composition comprising a fluorinated compound and a phosphate ester having at least one hydrocarbon residue having at least 6 carbon atoms. There is further provided a method of treatment applying the composition to a substrate.
Abstract:
The present invention relates to a packing structure for containers, characterized in that it comprises a material of xonotlite and/or tobermorite and/or foshagite crystal structure crystallized in the form of needles, at least 50% by volume of which have a length ranging from 2 to 10 μm and a thickness ranging from 0.2 to 1 μm. Process for manufacturing such a packing structure and gas container containing it.
Abstract:
A dental cement system, including an aqueous hydration liquid and a powdered material that essentially consists of an inorganic cement system, which powdered material has the capacity to form a complex, chemically bonded material with inorganic as well as organic phases with properties suitable for cementation of implant to another implant and/or to tooth or bone tissue.
Abstract:
This invention discloses a new technology related to cellulose fiber reinforced cement composite materials using cellulose fibers that are treated with inorganic and/or organic resins to make the fibers more hydrophobic, as well as other chemical treatments. This invention discloses four aspects of the technology: fiber treatment, formulations, methods and the final product. This technology advantageously provides fiber cement building materials with the desirable characteristics of reduced water absorption, reduced rate of water absorption, lower water migration, and lower water permeability. This invention also impart the final products improved freeze-thaw resistance, reduced efflorescence, and improved rot and UV resistances, compared to conventional fiber cement products. These improved attributes are gained without loss in dimensional stability, strength, strain or toughness. In some cases the physical and mechanical properties are improved. This invention also discloses the method of treating cellulose fibers with various chemicals to impart the fiber hydrophobicity for applications in the fiber reinforced cement composite materials.
Abstract:
An inorganic binder having calcium silicate sites which are connected the one with the other by alumina-silica phosphate bonds, whereby at least a portion of said alumina-silica bonds are alumina-silica phosphate bonds having a weight ratio Al2O3/SiO2 ranging from 0.3:1 to 10:1, a weight ratio Al2O3/P2O5 ranging from 0.0005 to 0.04, and a weight ratio P/B ranging from 20:1 to 100:1, whereby the inorganic binder further includes a waterproof and/or water repellent silicon compound or mixture.
Abstract:
A method of continuously forming a multilayer panel includes making a gypsum slurry, then dividing the gypsum slurry into at least a primary gypsum slurry and a secondary gypsum slurry. An additive slurry having water and an intumescent material is created, then added to the secondary gypsum slurry to make an expandable layer slurry that is spread over at least a portion of a facing material. The primary gypsum slurry is distributed over the secondary gypsum slurry over the facing material and the expanding layer slurry to form a core. Optionally, another layer, an edge coating, is applied to the expanding layer for additional fire protection. The edge coating includes a second intumescent material. During a fire, the expanding layer expands to increase the thickness of the fire exposed gypsum panel and the edge coating expands to seal the gap between adjoining gypsum panels.