Abstract:
A process for producing a carbon-particle structure, including the step of irradiating opaque carbon dioxide at and/or near its critical point, as light is scattered, with a UV-wavelength laser beam to produce a carbon-particle structure.
Abstract:
The invention concerns a process for the spheroidisation, densification and purification of powders through the combined action of plasma processing, and ultra-sound treatment of the plasma-processed powder. The ultra-sound treatment allows for the separation of the nanosized condensed powder, referred to as ‘soot’, from the plasma melted and partially vaporized powder. The process can also be used for the synthesis of nanopowders through the partial vaporization of the feed material, followed by the rapid condensation of the formed vapour cloud giving rise to the formation of a fine aerosol of nanopowder. In the latter case, the ultra-sound treatment step serves for the separation of the formed nanopowder form the partially vaporized feed material.
Abstract:
Methods for preparing microparticles having reduced residual solvent levels. Microparticles are contacted with a non-aqueous washing system to reduce the level of residual solvent in the microparticles. Preferred non-aqueous washing systems include 100% ethanol and a blend of ethanol and heptane. A solvent blend of a hardening solvent and a washing solvent can be used to harden and wash microparticles in a single step, thereby eliminating the need for a post-hardening wash step.
Abstract:
An in-liquid plasma electrode 1 according to the present invention is an in-liquid plasma electrode for generating plasma in a liquid L and has a conductive member 11 having an electric discharge end surface 111 in contact with the liquid L, and an insulating member 16 covering an outer periphery of the conductive member 11 at least except the electric discharge end surface 111. Preferably, d and x satisfy −2d≦x≦2d, where d is a length of a minor axis of the cross section when a conductive end portion 110 of the conductive member 11 having the electric discharge end surface 11 has a roughly circular cross section, or d is a length of a short side of the cross section when the conductive end portion 110 has a roughly rectangular cross section, and x is a distance from a reference plane 161 to a plane containing the electric discharge end surface 111 when the reference plane 161 is an end surface 161 of the insulating member 16 in roughly parallel with the electric discharge end surface 111. Owing to this construction, it is possible to provide an in-liquid plasma electrode which can simply generate plasma in a wide variety of liquids including a conductive liquid such as water and alcohol, and furthermore an in-liquid plasma generating apparatus having this electrode, and an in-liquid plasma generating method using this electrode.
Abstract:
This invention relates generally to novel methods for affecting, controlling, and/or directing various reactions with and in various liquids (such as water) by creating an energy field within and/or juxtaposed to at least one surface of said liquid. An important aspect of the invention involves the creation of a plasma, which plasma is created between at least one electrode located above the surface of the liquid and at least a portion of the surface of the liquid itself, which functions as at least one second electrode. In order to permit at least a portion of the surface of the liquid to function effectively as a second electrode, at least one additional electrically conducting electrode is typically located within (e.g., at least partially submerged within) said liquid. The plasma results in a restructuring of the liquid and/or the presence of at least one active species within said liquid.
Abstract:
Disclosed are methods for making ultrafine particles. These methods include (a) introducing a plurality of precursors to a high temperature chamber, the precursors including a first precursor and a second precursor different from the first precursor and comprising an alkali metal dopant; (b) heating the plurality of precursors in the high temperature chamber, yielding a gaseous product stream; (c) quenching the gaseous product stream, thereby producing ultrafine particles; and (d) collecting the ultrafine particles. Also disclosed are apparatus for the production of ultrafine particles, ultrafine particles produced from a plurality of precursors and coating compositions and coated substrates that include ultrafine particles.
Abstract:
Liquids are treated by ultrasound in a flow-through reaction vessel with an elongate ultrasonic horn mounted to the vessel with one end of the horn extending into the vessel interior. The liquid flow path inside the vessel is such that the entering liquid strikes the end of the horn at a direction normal to the end, then flows across the surface of the end before leaving the vessel. The end surface of the horn is positioned in close proximity to the entry port to provide a relatively high surface-to-volume ratio in the immediate vicinity of the horn end. In a further improvement, the horn is joined to an ultrasonic transducer through a booster block that provides an acoustic gain to the ultrasonic vibrations, and the booster block is plated with a reflective metal to lessen any loss of ultrasonic energy being transmitted to the horn.
Abstract:
Method and apparatus for electrolytically controlling the formation of scale and biofilm in water purification and other systems. An anode is deposited on or disposed on or adjacent to a surface, such as that of a quartz UV tube, providing a low pH environment which inhibits the formation of carbonate scale and biofilm.
Abstract:
The invention relates to a device for treating a flowing fluid, in particular water, including a housing with an inlet for supplying the fluid and an outlet for discharging the fluid, an element for generating radiation, in particular UV radiation, the radiation at least acting on a part of the flowing fluid, and a means for influencing the fluid flow within the housing wherein the means for influencing the fluid flow is configured as a module with a large number of structured metal sheets.
Abstract:
A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.