Abstract:
System of implant components containing active agents, wherein each component is intended to function as an additive for an implant material produced with a powdery or finely granulated starting material and/or active agents and additives.Each component is powdery or finely granulated and includes at least one powdery or finely granulated active agent or additive having a higher dosage than the desired concentration for the application. The components themselves are made of a powdery or finely granulated starting material for the implant material, as well as of the active agent or additive. The active agents can be chemotherapeutical agents, such as antibiotics, whereas the additives can be x-ray contrast materials and/or or additives that alter the physical properties of the starting material, such as its elasticity or viscosity.
Abstract:
The present invention relates to a bone cement precursor system that is presented in the form of two shelf-stable pastes which have been terminally sterilized and are held in separate containers during product transport and storage. When the product is used during surgery, these pastes inject to a site of application through a static mixing device by the action of applied injection force. When the two pastes are mixed, they start to react to each other while injecting out. The resulting composition is highly biocompatible, osteoconductive, injectable, rapid setting and bioresorbable, and is useful in connection with bone repair procedures, for example, in the craniomaxillofacial, trauma and orthopedic areas.
Abstract:
The invention relates to a polyalkenoate cement for biomedical or dental applications, comprising: a) at least one acidic, phosphorus-based polyalkenoate polymer, b) at least one acid-soluble salt or acid-soluble compound of a multivalent metal, c) at least one non-polymeric acidic phosphorus compound and d) an ion-releasing, finely divided glass which is capable of reacting with components (a), (b) and (c) in the presence of water.
Abstract:
The present invention relates to an adhesive composition applicable to skin comprising: (i) a polar oil or fat including (a) at least one triglyceride and/or (b) at least one fatty acid of the formula R—CO2H, wherein R is a C3 to C30 alkyl group; and (ii) at least one homopolymer, and/or copolymer. This invention also relates to a medical adhesive device including such adhesive composition.
Abstract:
A bioactive PMMA (polymethylmethacrylate) bone cement contains a powder component and a reactive monomer liquid, wherein the powder component and the reactive monomer liquid when mixed with one another react with one another and form a polymer-based solid material. The powder component contains particulate polymer powder of polymethylmethacrylates; a radical starter; and anionic copolymer nanoparticles. The anionic copolymer nanoparticles are distributed in nano-particulate form within the particulate powder component or coated as a film on particles of the particulate polymer powder.
Abstract:
An adhesive composition is provided including one or more polymerizable cyanoacrylate monomers and boron trifluoride as a stabilizer or complexing agent. The adhesive composition may also include or be used with a decomplexing agent, particularly one or more quaternary ammonium fluoride salts or one or more quaternary ammonium ether salts. A polymerization initiator or accelerator may also be used. The viscosity of the adhesive composition may be controlled by addition of a thickening agent which may be a polymer or copolymer catalyzed by a boron trifluoride complex or compound. Methods for the application of the adhesive compositions to living tissue are also provided.
Abstract:
The present disclosure provides methods and apparatus for replacing biological joints, but applies also to the fixation of any solid implant for use in dental or orthopaedic applications. In general, an ideal amount of bone cement is applied to the implant prior to going in to the operating room. Next, the polymerization (e.g., drying) process is suspended with a coating and/or a chemical. Once the implant(s) are needed in the operating room, the polymerization process is resumed. In this manner, the bone cement does not need to be mixed in the operating room, the surgeon does not need to “race the clock,” each implant is placed with the ideal amount of cement in the ideal consistency, there are no powder clumps, and there is little to no excess cement to remove.
Abstract:
An adhesive composition including an etchant for a hard tissue surface, at least one multifunctional crosslinkable (meth)acrylate monomer with a functionality greater than 4, and water. The adhesive composition is a water-in-oil emulsion.
Abstract:
Compositions for embolization are disclosed herein. The compositions disclosed can have a matrix-forming component, a solid-aggregate material, and a rheology modifying agent, wherein the matrix-forming component includes at least alkyl cyanoacrylate monomers, a stabilizer, and a plasticizer, and the solid-aggregate material includes at least a radiopacifier. The composition and a method of administering the composition are useful for treating vasculature abnormalities, particularly when the composition solidifies upon contact with an ionic environment, such as blood.
Abstract:
The present disclosure relates to bone cement formulations that have an extended working time for use in vertebroplasty procedures and other osteoplasty procedures together with cement injectors that include energy delivery systems for on-demand control of cement viscosity and flow parameters. The bone cement formulations may include a liquid component having at least one monomer and a non-liquid component including polymer particles and benzoyl peroxide (BPO). The non-liquid component may be further configured to allow controlled exposure of the BPO to the liquid monomer so as to enable control of the viscosity of the bone cement composition.