Abstract:
According to the present invention, in a specified image position estimating apparatus, for, even if an original image varies in size to vary a size of a mark, detecting the mark in the original image fast and accurately to securely estimate the position of a specified image included in the original image, there are provided a position detection point detecting unit for, in a state where three or more position detection marks, each of which is made such that two or more straight lines intersect with each other or come into contact with each other at one position detection point, are affixed to the original image, detecting the position detection point of each of the position detection marks on the original image and a specified image position estimating unit for estimating the position of the specified image in the original image on the basis of the position detection point.
Abstract:
An input image distortion detection unit 11 detects a distortion of each of a plurality of input images (two herein) and corrects the distortion of each image. An overlapping position detection unit 12 detects the overlapping position of the two input images being combined using the images after subjecting to correction for distortion. A mutual distortion and expansion/contraction detection unit 13 detects a mutual distortion or expansion/contraction of the two images being combined in the overlapping position. Based on these detection results, the mutual distortion of the two input images is corrected or the expansion/contraction is interpolated. Finally image superimpose unit 15 combines the two images.
Abstract:
A decoding device has data extracting units extracting data from an image, data occurrence frequency calculating units calculating an occurrence frequency of data on a digit-by-digit basis, weighting units setting a weight corresponding to the occurrence frequency for every reference code so that the data with a smaller occurrence frequency in the extracted data becomes a majority in a decision by a weighted majority, first decision-by-majority units deciding the detection result of the data on the basis of the decision by the weighted majority, and judging units judging whether the image is falsified or non-falsified in accordance with whether the detection code decided by the first decision-by-majority units, is correct or erroneous.
Abstract:
An image compression apparatus is provided which includes an image dividing section that divides 3D image data into a plurality of units of data, 3D image data being composed of a plurality of frames, a pixel selection section that sequentially selects a pixel in one of the plurality of units as a target pixel in a predetermined order and selects pixels located within a predetermined range near the target pixel as reference pixels, a prediction error calculation section that calculates a prediction value of a target pixel value which is a pixel value of the target pixel, according to the pixel values of the reference pixels and calculates a prediction error which is a difference between the prediction value and the target pixel value, and an entropy coding section that performs entropy coding of the prediction error in each of the plurality of units.
Abstract:
According to the present invention, in a specified image position estimating apparatus, for, even if an original image varies in size to vary a size of a mark, detecting the mark in the original image fast and accurately to securely estimate the position of a specified image included in the original image, there are provided a position detection point detecting unit for, in a state where three or more position detection marks, each of which is made such that two or more straight lines intersect with each other or come into contact with each other at one position detection point, are affixed to the original image, detecting the position detection point of each of the position detection marks on the original image and a specified image position estimating unit for estimating the position of the specified image in the original image on the basis of the position detection point.
Abstract:
To reduce the processing required to embed a code into image data and decode the code. The present invention includes a block dividing section 101 that divides original image data 10 into a plurality of blocks (M×N); an averaging section 103 that extracts each average density (characteristic amount) in a plurality of blocks; and an encoding section 106 that embeds a code C (a plurality of bits) into a plurality of blocks by relating one code (one bit out of the code C) to each pair of blocks mutually located in near position in the plurality of blocks based on a magnitude relation of the average density.
Abstract:
A decoding device has data extracting units extracting data from an image, data occurrence frequency calculating units calculating an occurrence frequency of data on a digit-by-digit basis, weighting units setting a weight corresponding to the occurrence frequency for every reference code so that the data with a smaller occurrence frequency is decided as a result of detection based on a decision by a weighted majority, or so that the decision of the detection result based on the decision by the weighted majority gets unable to be made due to equivalence in the decision by the weighted majority, first decision-by-majority units deciding the detection result of the data on the basis of the decision by the weighted majority, and judging units judging whether the image is falsified or non-falsified in accordance with whether the detection code decided by the first decision-by-majority units, is correct or erroneous.
Abstract:
An image processing method of arranging orientation detection information for detecting an image orientation in an image includes arranging the orientation detection information in at least two positions that are symmetric with respect to a center of the image.
Abstract:
An image compression divides an input image into blocks having the predetermined number of horizontal and longitudinal pixels, and scans the divided blocks in a main scan direction and a sub scan direction so as to select them in order as a processing block, and selects as a reference block a block in which positional relation with the selected block and a relation of a pixel value satisfies a predetermined condition. Subsequently, the pixel values of the processing block and the reference block are subjected to an exclusive-OR (XOR) so as to generate a differential image, and in case the differential image satisfies the predetermined condition, the processing block is replaced with the differential image. Further, the image including the differential image obtained by executing the block replacement in the processing block is encoded, and the code data obtained by executing this image encoding, the presence or absence of replacement with the differential image of each processing block obtained by executing the block replacement, and positional information of the reference block are combined and outputted. The image decoding is executed in such way that the image including the differential image from the code data is decoded, and this decoded image is decoded into the original image by an exclusive-OR with the processing block which is divided into blocks and the reference block.
Abstract:
An image encoding apparatus includes an extracting unit and a replacing unit. An image is subjected to quantized orthogonal transformation and quantization, and quantized orthogonal transform coefficients are grouped and encoded group-wise. The extracting unit extracts, from among a group of quantized orthogonal transform coefficients, those quantized orthogonal transform coefficients that are within a designated range starting from boundary values of the next lower group. The replacing unit replaces values of the quantized orthogonal transform coefficients extracted, with values of the quantized orthogonal transform coefficients of the next lower group.