-
公开(公告)号:US20230229957A1
公开(公告)日:2023-07-20
申请号:US17576724
申请日:2022-01-14
Applicant: salesforce.com, inc.
Inventor: Shuyang Li , Yingbo Zhou , Semih Yavuz , Govardana Sachithanandam Ramachandran
IPC: G06N20/00
CPC classification number: G06N20/00
Abstract: Methods, apparatuses, and computer-program products are disclosed. The method may include inputting one or more subcomponent training datasets into the plurality of subcomponent models of the machine learning model, the machine learning model may be configured to perform a final task, and the plurality of subcomponent models may be configured to perform sequential subtasks that result in the final task. The method may include computing one or more weights for data points of the one or more subcomponent training datasets and the one or more weights may be based on a contribution of the data points to an end-to-end error loss measurement associated with performing the final task of the machine learning model. The method may include training the plurality of subcomponent models based on the one or more weights for the data points of the one or more subcomponent training datasets.
-
公开(公告)号:US11741142B2
公开(公告)日:2023-08-29
申请号:US17589522
申请日:2022-01-31
Applicant: salesforce.com, inc.
Inventor: Haopeng Zheng , Semih Yavuz , Wojciech Kryscinski , Kazuma Hashimoto , Yingbo Zhou
IPC: G06F16/34 , G06F40/166 , G06N20/00 , G06F40/117 , G06F40/279
CPC classification number: G06F16/345 , G06F40/166 , G06N20/00 , G06F40/117 , G06F40/279
Abstract: Embodiments described herein provide document summarization systems and methods that utilize fine-tuning of pre-trained abstractive summarization models to produce summaries that more faithfully track the content of the documents. Such abstractive summarization models may be pre-trained using a corpus consisting of pairs of articles and associated summaries. For each article-summary pair, a pseudo label or control code is generated and represents a faithfulness of the summary with respect to the article. The pre-trained model is then fine-tuned based on the article-summary pairs and the corresponding control codes. The resulting fine-tuned models then provide improved faithfulness in document summarization tasks.
-
公开(公告)号:US20220383159A1
公开(公告)日:2022-12-01
申请号:US17534085
申请日:2021-11-23
Applicant: salesforce.com, inc.
Inventor: Semih Yavuz , Kazuma Hashimoto , Yingbo Zhou
IPC: G06N5/04 , G06F40/40 , G06F40/284
Abstract: Embodiments described herein provide a fusion-in-decoder (FID) based model (referred to as “PATHID”) for open-domain multi-hop question answering. Specifically, PATHID addresses the gap between the general behavior of the FID model on single-hop and multi-hop question answering, and provides more transparency into the reasoning path. In addition to answer generation, PATHID explicitly models the full reasoning path to resolve the answer with a generative sequence-to-sequence model.
-
4.
公开(公告)号:US20230055188A1
公开(公告)日:2023-02-23
申请号:US17565215
申请日:2021-12-29
Applicant: salesforce.com, inc.
Inventor: Xi Ye , Semih Yavuz , Kazuma Hashimoto , Yingbo Zhou
IPC: G06N5/04 , G06N5/02 , G06F16/2457
Abstract: Embodiments described herein provide a question answering approach that answers a question by generating an executable logical form. First, a ranking model is used to select a set of good logical forms from a pool of logical forms obtained by searching over a knowledge graph. The selected logical forms are good in the sense that they are close to (or exactly match, in some cases) the intents in the question and final desired logical form. Next, a generation model is adopted conditioned on the question as well as the selected logical forms to generate the target logical form and execute it to obtain the final answer. For example, at inference stage, when a question is received, a matching logical form is identified from the question, based on which the final answer can be generated based on the node that is associated with the matching logical form in the knowledge base.
-
5.
公开(公告)号:US20220374459A1
公开(公告)日:2022-11-24
申请号:US17533613
申请日:2021-11-23
Applicant: salesforce.com, inc.
Inventor: Ye Liu , Kazuma Hashimoto , Yingbo Zhou , Semih Yavuz , Caiming Xiong
IPC: G06F16/335 , G06F16/332 , G06F16/31
Abstract: Embodiments described herein provide a dense hierarchical retrieval for open-domain question and answering for a corpus of documents using a document-level and passage-level dense retrieval model. Specifically, each document is viewed as a structural collection that has sections, subsections and paragraphs. Each document may be split into short length passages, where a document-level retrieval model and a passage-level retrieval model may be applied to return a smaller set of filtered texts. Top documents may be identified after encoding the question and the documents and determining document relevance scores to the encoded question. Thereafter, a set of top passages are further identified based on encoding of the passages and determining passage relevance scores to the encoded question. The document and passage relevance scores may be used in combination to determine a final retrieval ranking for the documents having the set of top passages.
-
公开(公告)号:US11727210B2
公开(公告)日:2023-08-15
申请号:US17162040
申请日:2021-01-29
Applicant: salesforce.com, inc.
Inventor: Qingyun Wang , Nazneen Rajani , Semih Yavuz , Xi Lin
IPC: G06F40/284 , G06F40/205 , G06F40/10
CPC classification number: G06F40/284 , G06F40/10 , G06F40/205
Abstract: Embodiments described herein provide systems and methods for data-to-text generation. The embodiments receive input data that includes a resource description framework (RDF) triples in an RDF graph. A data-to-text generation system generates position aware embeddings, including position embeddings, triple role embeddings, and tree-level embeddings. Using the position aware embeddings and the RDF graph, the data-to-text generation system generates a textual description for the RDF graph.
-
7.
公开(公告)号:US20230059870A1
公开(公告)日:2023-02-23
申请号:US17565305
申请日:2021-12-29
Applicant: salesforce.com, inc.
Inventor: Xi Ye , Semih Yavuz , Kazuma Hashimoto , Yingbo Zhou
Abstract: Embodiments described herein provide a question answering approach that answers a question by generating an executable logical form. First, a ranking model is used to select a set of good logical forms from a pool of logical forms obtained by searching over a knowledge graph. The selected logical forms are good in the sense that they are close to (or exactly match, in some cases) the intents in the question and final desired logical form. Next, a generation model is adopted conditioned on the question as well as the selected logical forms to generate the target logical form and execute it to obtain the final answer. For example, at inference stage, when a question is received, a matching logical form is identified from the question, based on which the final answer can be generated based on the node that is associated with the matching logical form in the knowledge base.
-
公开(公告)号:US20230054068A1
公开(公告)日:2023-02-23
申请号:US17589522
申请日:2022-01-31
Applicant: salesforce.com, inc.
Inventor: Haopeng Zheng , Semih Yavuz , Wojciech Kryscinski , Kazuma Hashimoto , Yingbo Zhou
IPC: G06F40/166 , G06F40/279 , G06F40/117 , G06N20/00
Abstract: Embodiments described herein provide document summarization systems and methods that utilize fine-tuning of pre-trained abstractive summarization models to produce summaries that more faithfully track the content of the documents. Such abstractive summarization models may be pre-trained using a corpus consisting of pairs of articles and associated summaries. For each article-summary pair, a pseudo label or control code is generated and represents a faithfulness of the summary with respect to the article. The pre-trained model is then fine-tuned based on the article-summary pairs and the corresponding control codes. The resulting fine-tuned models then provide improved faithfulness in document summarization tasks.
-
公开(公告)号:US20210375269A1
公开(公告)日:2021-12-02
申请号:US16999426
申请日:2020-08-21
Applicant: salesforce.com, inc.
Inventor: Semih Yavuz , Kazuma Hashimoto , Wenhao Liu , Nitish Shirish Keskar , Richard Socher , Caiming Xiong
IPC: G10L15/183 , G06N20/00 , G10L15/06 , G06F17/18
Abstract: Embodiments described herein utilize pre-trained masked language models as the backbone for dialogue act tagging and provide cross-domain generalization of the resulting dialogue acting taggers. For example, a pre-trained MASK token of BERT model may be used as a controllable mechanism for augmenting text input, e.g., generating tags for an input of unlabeled dialogue history. The pre-trained MASK model can be trained with semi-supervised learning, e.g., using multiple objectives from supervised tagging loss, masked tagging loss, masked language model loss, and/or a disagreement loss.
-
公开(公告)号:US11829721B2
公开(公告)日:2023-11-28
申请号:US17161214
申请日:2021-01-28
Applicant: salesforce.com, inc.
Inventor: Tong Niu , Semih Yavuz , Yingbo Zhou , Nitish Shirish Keskar , Huan Wang , Caiming Xiong
IPC: G10L15/065 , G06N3/0455 , G06F18/20 , G06F40/20 , G06F40/289 , G06F40/45 , G06F40/284 , G06F40/242 , G06F18/22 , G06F18/214 , G06N7/01
CPC classification number: G06F40/284 , G06F18/214 , G06F18/22 , G06F40/242 , G06N7/01
Abstract: Embodiments described herein provide dynamic blocking, a decoding algorithm which enables large-scale pretrained language models to generate high-quality paraphrases in an un-supervised setting. Specifically, in order to obtain an alternative surface form, when the language model emits a token that is present in the source sequence, the language model is prevented from generating the next token that is the same as the subsequent source token in the source sequence at the next time step. In this way, the language model is forced to generate a paraphrased sequence of the input source sequence, but with mostly different wording.
-
-
-
-
-
-
-
-
-