Abstract:
In accordance with embodiments, there are provided mechanisms and methods for facilitating evaluation of data types for dynamic lightweight objects in an on-demand services environment. In one embodiment and by way of example, a method includes uploading a data file having data at a first computing device in response to a request, and detecting data types relating to the data within the data file. The detecting includes scanning data rows and data columns of the data file. The method may further include classifying the detected data types into one or more categories, and creating one or more dynamic objects based on the one or more categories.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for facilitating evaluation of data types for dynamic lightweight objects in an on-demand services environment. In one embodiment and by way of example, a method includes uploading a data file having data at a first computing device in response to a request, and detecting data types relating to the data within the data file. The detecting includes scanning data rows and data columns of the data file. The method may further include classifying the detected data types into one or more categories, and creating one or more dynamic objects based on the one or more categories.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for facilitating conversion and correction of data types for dynamic lightweight objects via a user interface in an on-demand services environment. In one embodiment and by way of example, a method includes receiving a first data file at a first computing device, identifying data types in the first data file that correspond to dynamic custom objects associated with the first data file, and linking the data types to their corresponding dynamic custom objects.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for facilitating evaluation of data types for dynamic lightweight objects in an on-demand services environment. In one embodiment and by way of example, a method includes uploading a data file having data at a first computing device in response to a request, and detecting data types relating to the data within the data file. The detecting includes scanning data rows and data columns of the data file. The method may further include classifying the detected data types into one or more categories, and creating one or more dynamic objects based on the one or more categories.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for facilitating conversion and correction of data types for dynamic lightweight objects via a user interface in an on-demand services environment. In one embodiment and by way of example, a method includes receiving a first data file at a first computing device, identifying data types in the first data file that correspond to dynamic custom objects associated with the first data file, and linking the data types to their corresponding dynamic custom objects.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for facilitating evaluation of data types for dynamic lightweight objects in an on-demand services environment. In one embodiment and by way of example, a method includes uploading a data file having data at a first computing device in response to a request, and detecting data types relating to the data within the data file. The detecting includes scanning data rows and data columns of the data file. The method may further include classifying the detected data types into one or more categories, and creating one or more dynamic objects based on the one or more categories.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for facilitating evaluation of data types for dynamic lightweight objects in an on-demand services environment. In one embodiment and by way of example, a method includes uploading a data file having data at a first computing device in response to a request, and detecting data types relating to the data within the data file. The detecting includes scanning data rows and data columns of the data file. The method may further include classifying the detected data types into one or more categories, and creating one or more dynamic objects based on the one or more categories.
Abstract:
The technology disclosed relates to presenting a data entity interface that connects a multi-tenant database code to a multi-tenant database and at least one other database from a different data source. In particular, it relates to providing a custom entity shape that serves as a common interface from a multi-tenant database application code to multiple databases from one or more different data sources that have fields implementing at least some common data with different data structures. This common interface creates a layer of abstraction that provides a consistent behavior across the multiple databases and sets rules that govern how information is presented and shared with the different data sources.
Abstract:
In accordance with embodiments, there are provided mechanisms and methods for facilitating evaluation of data types for dynamic lightweight objects in an on-demand services environment. In one embodiment and by way of example, a method includes uploading a data file having data at a first computing device in response to a request, and detecting data types relating to the data within the data file. The detecting includes scanning data rows and data columns of the data file. The method may further include classifying the detected data types into one or more categories, and creating one or more dynamic objects based on the one or more categories.