Abstract:
A content item presented to a user may involve two or more topics, such as news articles mentioning athletes or actors. Users may enjoy expressing opinions about a comparison of the topics, such as personal preferences or an evaluation of talent. Presented herein are techniques for automatically generating, for the content item, a poll among the topics of the content item. The respective comparisons of a comparison set are evaluated for the topics of the content item, and a comparison relevance score is computed identifying the relevance of the comparison of the topics. The comparison having the highest relevance for the topics is selected, and a comparison question is formulated and presented to the user with the content item. Results may be tabulated and presented for the topics of the content item. These techniques facilitate user expression about the content item without depending upon user-authored polls for each content item.
Abstract:
A method for estimating model parameters. The method comprises receiving a data set related to a plurality of users and associated content, partitioning the data set into a plurality of sub data sets in accordance with the users so that data associated with each user are not partitioned into more than one sub data set, storing each of the sub data sets in a separate one of a plurality of user data storages, each of said data storages being coupled with a separate one of a plurality of estimators, storing content associated with the plurality of users in a content storage, where the content storage is coupled to the plurality of estimators so that the content in the content storage is shared by the estimators, and estimating, asynchronously by each estimator, one or more parameters associated with a model based on data from one of the sub data sets.
Abstract:
A content item presented to a user may involve two or more topics, such as news articles mentioning athletes or actors. Users may enjoy expressing opinions about a comparison of the topics, such as personal preferences or an evaluation of talent. Presented herein are techniques for automatically generating, for the content item, a poll among the topics of the content item. The respective comparisons of a comparison set are evaluated for the topics of the content item, and a comparison relevance score is computed identifying the relevance of the comparison of the topics. The comparison having the highest relevance for the topics is selected, and a comparison question is formulated and presented to the user with the content item. Results may be tabulated and presented for the topics of the content item. These techniques facilitate user expression about the content item without depending upon user-authored polls for each content item.
Abstract:
Methods and devices for assessing the quality of user-generated content are described. In one embodiment, a method is disclosed for measuring the quality of a user-generated answer to a question by combining various factors, including question-answer surface word vector similarity, question-answer explicit semantic analysis vector similarity, answer-answer explicit sematic analysis vector similarity, query performance predictor, sentiment analysis, textual analysis of the answer, and reputation of the answerer. The method uses a learning procedure to determine the best algorithm for measuring the overall quality of the answer based on these factors.
Abstract:
A method for adjusting one or more parameters associated with a model. The method comprises obtaining, from a first source, first information related to activity of a user. The method further comprises adjusting one or more parameters associated with a model based on the first information collected within a first length of time, and obtaining, from a second source, second information related to activity of the user. The method further comprises adjusting the one or more parameters associated with the model based on the second information collected within a second length of time and a measure indicative of performance of the model, wherein the second length of time is larger than the first length of time.
Abstract:
Briefly, example methods, apparatuses, and/or articles of manufacture are disclosed that may be implemented, in whole or in part, using one or more computing devices to facilitate and/or support one or more operations and/or techniques for in part, to facilitate and/or support one or more operations and/or techniques for ranking answers for on-line community questions.
Abstract:
Methods and devices for assessing the quality of user-generated content are described. In one embodiment, a method is disclosed for measuring the quality of a user-generated answer to a question by combining various factors, including question-answer surface word vector similarity, question-answer explicit semantic analysis vector similarity, answer-answer explicit sematic analysis vector similarity, query performance predictor, sentiment analysis, textual analysis of the answer, and reputation of the answerer. The method uses a learning procedure to determine the best algorithm for measuring the overall quality of the answer based on these factors.
Abstract:
A method for adjusting one or more parameters associated with a model. The method comprises obtaining, from a first source, first information related to activity of a user. The method further comprises adjusting one or more parameters associated with a model based on the first information collected within a first length of time, and obtaining, from a second source, second information related to activity of the user. The method further comprises adjusting the one or more parameters associated with the model based on the second information collected within a second length of time and a measure indicative of performance of the model, wherein the second length of time is larger than the first length of time.
Abstract:
Method, system, and programs for estimating interests of a plurality of users with respect to a new piece of information are disclosed. In one example, historical interests of the plurality of users are obtained with respect to one or more existing pieces of information. One or more users are selected from the plurality of users. Historical interests of the one or more users can minimize an objective function over the plurality of users. Interests of the one or more users are obtained with respect to the new piece of information. Estimated interests of the plurality of users are generated with respect to the new piece of information based on the obtained interests of the one or more users.