Abstract:
Systems and methods for rewriting query terms are disclosed. The system collects queries and query session data and separates the queries into sequences of queries having common sessions. The sequences of queries are then input into a deep learning network to build a multidimensional word vector in which related terms are nearer one another than unrelated terms. An input query is then received and the system matches the input query in the multidimensional word vector and rewrites the query using the nearest neighbors to the term of the input query.
Abstract:
The present teaching relates to joint representation of information. In one example, first and second pieces of information are received. Each of the first and second pieces of information relates to one word in a plurality of documents, one of the documents, or one of user to which the documents are given. A model for estimating feature vectors is obtained. The model includes a first neural network model based on a first order of words within one of the documents and a second neural network model based on a second order in which at least some of the documents are given. Based on the model, a first feature vector of the first piece of information and a second feature vector of the second piece of information are estimated. A similarity between the first and second pieces of information is determined based on a distance between the first and second feature vectors.
Abstract:
A system stored in a non-transitory medium executable by processor circuitry is provided for generating retargeting keywords based on distributed query word representations. The system includes one or more system databases storing historical web search data. Search retargeting circuitry receives requests to generate sets of retargeting keywords related to one or more categories of an advertisement campaign and pre-processing circuitry retrieves a set of historical web search data related to the one or more categories of the advertisement campaign. Modeling circuitry further applies one or more computational linguistic models to the retrieved set of historical web search data and generates distributed query word representations from the retrieved set of historical web search data. Keyword generator circuitry generates a list of retargeting keywords related to the one or more categories of the advertisement campaign using the generated distributed query word representations.