Abstract:
The present teaching, which includes methods, systems and computer-readable media, relates to providing a representation of a relationship between entities related to online content interaction. The disclosed techniques may include receiving data related to online content interactions between a set of first entities and a set of second entities, and based on the received data, determining, for each one of the set of first entities, a set of first interaction frequency values each corresponding to one of the set of second entities, and determining, for each one of the set of second entities, a second interaction frequency value. Further, for each one of the set of first entities, a set of relation values may be determined based on the set of first interaction frequency values for that first entity and the second interaction frequency values, each relation value indicating an interaction relationship between that first entity and one second entity.
Abstract:
Methods, systems, and programs are provided to determine event-level traffic quality for event(s) related to user interaction with online content (e.g., via a webpage, a mobile application, etc.). Data related to a current user event and past user events may be received, where such data may include information regarding a set of entities associated with each respective user event. A feature value set for the current user event is generated based on the information regarding the respective sets of entities associated with the current user event and the past user events. Based at least on such feature value set, a traffic quality score for the current user event may be determined, e.g., based on a weighted combination of elements of the feature value set. An entity-level traffic quality score for an entity may be determined based on event-level traffic quality scores of user events that involve that entity.
Abstract:
The present teaching, which includes methods, systems and computer-readable media, relates to detecting online coalition fraud. The disclosed techniques may include grouping visitors that interact with online content into clusters, obtaining traffic features for each visitor, wherein the traffic features are based at least on data representing the corresponding visitor's interaction with the online content; determining, for each cluster, cluster metrics based on (one or more statistical values of) the traffic features of the visitors in that cluster; and determining whether a cluster is fraudulent based on the cluster metrics of the first cluster. For example, determining whether a cluster is fraudulent may include determining whether a first statistical value of the traffic features related to the first cluster is greater than a first threshold value, and/or determining whether a second statistical value of the traffic features related to the first cluster is lower than a second threshold value.
Abstract:
Methods, systems, and programs are provided to determine event-level traffic quality for event(s) related to user interaction with online content (e.g., via a webpage, a mobile application, etc.). Data related to a current user event and past user events may be received, where such data may include information regarding a set of entities associated with each respective user event. A feature value set for the current user event is generated based on the information regarding the respective sets of entities associated with the current user event and the past user events. Based at least on such feature value set, a traffic quality score for the current user event may be determined, e.g., based on a weighted combination of elements of the feature value set. An entity-level traffic quality score for an entity may be determined based on event-level traffic quality scores of user events that involve that entity.