DRIVER STRUCTURE FOR RGBW FOUR-COLOR PANEL
    1.
    发明申请

    公开(公告)号:US20180182317A1

    公开(公告)日:2018-06-28

    申请号:US15128422

    申请日:2016-08-30

    Abstract: The invention discloses a driver structure for RGBW four-color panel, the RBGW four-color panel comprising a plurality of sub-pixels arrange in an array, for twelve adjacent sub-pixels connected to a same scan line n, the twelve sub-pixels comprising a red sub-pixel, a green sub-pixel, a blue sub-pixel and a white sub-pixel arranged in a specific order with three repetitions, two adjacent data lines n and n+1, being connected respectively to drive the sub-pixels of the odd-rows and even-rows in the twelve sub-pixels, and the data line n and data line n+1 having opposite signal polarity. In summary, the driver structure for RGBW four-color panel of the present invention can reduce the panel power-consumption and the cost of driver IC, which enables improving flickering.

    TFT ARRAY SUBSTRATE AND DISPLAY DEVICE

    公开(公告)号:US20210082962A1

    公开(公告)日:2021-03-18

    申请号:US16319351

    申请日:2018-09-18

    Inventor: Zhufeng Cui

    Abstract: The present invention teaches a TFT array substrate and a display device. The TFT array substrate disposes second fanout lines of the fanout area on a first metallic layer, and disposes first fanout lines of the fanout area on a second metallic layer. Data lines and their corresponding second fanout lines, and second fanout lines and their corresponding first fanout lines, are connected together through vias. The first metallic layer has a greater surface resistivity than that of the second metallic layer. The present invention's fanout lines corresponding to a same data line have a significantly increased total impedance, and the impedance variation of the fanout lines has a less impact. As data signals propagate to the data lines through the fanout lines, the data signals' arrival times to the data lines have little difference, thereby enhancing the display quality, more reliable manufacturing process, and lower risk for short circuit.

    TFT array substrate and display device

    公开(公告)号:US11011553B2

    公开(公告)日:2021-05-18

    申请号:US16319351

    申请日:2018-09-18

    Inventor: Zhufeng Cui

    Abstract: The present invention teaches a TFT array substrate and a display device. The TFT array substrate disposes second fanout lines of the fanout area on a first metallic layer, and disposes first fanout lines of the fanout area on a second metallic layer. Data lines and their corresponding second fanout lines, and second fanout lines and their corresponding first fanout lines, are connected together through vias. The first metallic layer has a greater surface resistivity than that of the second metallic layer. The present invention's fanout lines corresponding to a same data line have a significantly increased total impedance, and the impedance variation of the fanout lines has a less impact. As data signals propagate to the data lines through the fanout lines, the data signals' arrival times to the data lines have little difference, thereby enhancing the display quality, more reliable manufacturing process, and lower risk for short circuit.

    Driver structure for RGBW four-color panel

    公开(公告)号:US10008163B1

    公开(公告)日:2018-06-26

    申请号:US15128422

    申请日:2016-08-30

    Abstract: The invention discloses a driver structure for RGBW four-color panel, the RBGW four-color panel comprising a plurality of sub-pixels arrange in an array, for twelve adjacent sub-pixels connected to a same scan line n, the twelve sub-pixels comprising a red sub-pixel, a green sub-pixel, a blue sub-pixel and a white sub-pixel arranged in a specific order with three repetitions, two adjacent data lines n and n+1, being connected respectively to drive the sub-pixels of the odd-rows and even-rows in the twelve sub-pixels, and the data line n and data line n+1 having opposite signal polarity. In summary, the driver structure for RGBW four-color panel of the present invention can reduce the panel power-consumption and the cost of driver IC, which enables improving flickering.

Patent Agency Ranking