-
公开(公告)号:US12182332B2
公开(公告)日:2024-12-31
申请号:US17830990
申请日:2022-06-02
Applicant: Sony Interactive Entertainment Inc.
Inventor: Jorge Arroyo Palacios , Chockalingam Ravi Sundaram , Mark Anthony , Michael Hardisty , Sandeep Bansal
IPC: A63F13/215 , A63F13/211 , A63F13/213 , A63F13/2145 , A63F13/218 , A63F13/235 , G06F3/01 , G06F3/03 , G06F3/0346 , G06N20/20
Abstract: Methods and systems are provided for verifying an input provided at a controller including detecting a finger gesture on a surface of the controller. Responsive to detecting the finger gesture, multi-modal data is collected from a plurality of sensors and components tracking the finger gesture. The multi-modal data is used to generate an ensemble model using machine learning algorithm. The ensemble model is trained in accordance to training rules defined for different finger gestures. An output is identified from the ensemble model for the finger gesture. The output is interpreted to define an input for an interactive application selected for interaction.
-
公开(公告)号:US20230393662A1
公开(公告)日:2023-12-07
申请号:US17830990
申请日:2022-06-02
Applicant: Sony Interactive Entertainment Inc.
Inventor: Jorge Arroyo Palacios , Chockalingam Ravi Sundaram , Mark Anthony , Michael Hardisty , Sandeep Bansal
IPC: G06F3/01 , G06N20/20 , G06F3/03 , G06F3/0346 , A63F13/2145 , A63F13/211 , A63F13/218 , A63F13/235 , A63F13/213 , A63F13/215
CPC classification number: G06F3/017 , G06N20/20 , G06F3/0304 , G06F3/0346 , A63F13/2145 , A63F13/211 , A63F13/218 , A63F13/235 , A63F13/213 , A63F13/215 , A63F2300/1031 , A63F2300/105 , A63F2300/1056 , A63F2300/1075 , A63F2300/1081 , A63F2300/1087
Abstract: Methods and systems are provided for verifying an input provided at a controller including detecting a finger gesture on a surface of the controller. Responsive to detecting the finger gesture, multi-modal data is collected from a plurality of sensors and components tracking the finger gesture. The multi-modal data is used to generate an ensemble model using machine learning algorithm. The ensemble model is trained in accordance to training rules defined for different finger gestures. An output is identified from the ensemble model for the finger gesture. The output is interpreted to define an input for an interactive application selected for interaction.
-