Abstract:
There is provided an apparatus for visualizing a region of interest (ROI) in a Computer Aided Diagnosis (CAD) system. The apparatus includes: an image receiver configured to receive images; an ROI acquirer configured to acquire the ROI from a current image; and an ROI visualizer configured to, in response to acquisition of the ROI from the current image, output visualization information for visualizing the ROI acquired from the current image based on a change between the ROI acquired from the current image and an ROI acquired from a previous image.
Abstract:
An apparatus for diagnosis of a medical image includes a storage having a predetermined size, the storage being configured to store sample frames sampled from among received frames which are received from a medical imaging device; a frame collector configured to, once a reference frame is determined, collect one or more sample frames stored in the storage; and a diagnosis component configured to provide a diagnosis for the reference frame based on diagnostic results associated with the one or more collected sample frames.
Abstract:
A mobile robot system for allowing a user to easily input a control command of a mobile robot, and a remote control method for the same are disclosed. The mobile robot system and the remote control method thereof can allow a user to easily input control commands regarding the movement and operation of the mobile robot using the jog-dial interface, such that the possibility of causing input errors can be reduced and desired commands can be quickly and efficiently transmitted, resulting in increased user manipulation of the mobile robot system. When the user enters the rotation command of the mobile robot, the mobile robot system can allow the user to perform intuitive interfacing through shuttle manipulation, such that the mobile robot system can facilitate transmission of a movement command having a circular trajectory and the same mobile robot control as in the user-intended control is achieved, resulting in implementation of emotional interface capable of increasing user accessibility.
Abstract:
An apparatus and a method for Computer Aid Diagnosis (CAD) based on eye movement are provided. The apparatus includes a gaze area detector configured to detect, based on eye movement of a user, a gaze area on a medical image on which a region of interest (ROI) is detected, the gaze area being an area at which the user gazes for a period of time. The apparatus further includes an ROI redetector configured to detect another ROI on the gaze area.
Abstract:
An apparatus and method for adaptive computer-aided diagnosis (CAD) are provided. The adaptive CAD apparatus includes an image analysis algorithm selector configured to select an image analysis algorithm based on a speed of a probe or a resolution of a current image frame obtained by the probe; and an image analyzer configured to detect and classify a region of interest (ROI) in the current image frame using the selected image analysis algorithm.
Abstract:
A mobile robot system for allowing a user to easily input a control command of a mobile robot, and a remote control method for the same are disclosed. The mobile robot system and the remote control method thereof can allow a user to easily input control commands regarding the movement and operation of the mobile robot using the jog-dial interface, such that the possibility of causing input errors can be reduced and desired commands can be quickly and efficiently transmitted, resulting in increased user manipulation of the mobile robot system. When the user enters the rotation command of the mobile robot, the mobile robot system can allow the user to perform intuitive interfacing through shuttle manipulation, such that the mobile robot system can facilitate transmission of a movement command having a circular trajectory and the same mobile robot control as in the user-intended control is achieved, resulting in implementation of emotional interface capable of increasing user accessibility.