-
公开(公告)号:US11341631B2
公开(公告)日:2022-05-24
申请号:US16028389
申请日:2018-07-05
Applicant: SHENZHEN KEYA MEDICAL TECHNOLOGY CORPORATION
Inventor: Qi Song , Shanhui Sun , Feng Gao , Junjie Bai , Hanbo Chen , Youbing Yin
Abstract: The present disclosure is directed to a method and system for automatically detecting a physiological condition from a medical image of a patient. The method may include receiving the medical image acquired by an imaging device. The method may further include detecting, by a processor, target objects and obtaining the corresponding target object patches from the received medical image. And the method may further include determining, by the processor, a first parameter using a first learning network for each target object patch. The first parameter represents the physiological condition level of the corresponding target object, and the first learning network is trained by adding one or more auxiliary classification layers. This method can quickly, accurately, and automatically predict target object level and/or image (patient) level physiological condition from a medical image of a patient by means of a learning network, such as 3D learning network.
-
2.
公开(公告)号:US20190050982A1
公开(公告)日:2019-02-14
申请号:US16028389
申请日:2018-07-05
Applicant: SHENZHEN KEYA MEDICAL TECHNOLOGY CORPORATION
Inventor: Qi Song , Shanhui Sun , Feng Gao , Junjie Bai , Hanbo Chen , Youbing Yin
Abstract: The present disclosure is directed to a method and system for automatically detecting a physiological condition from a medical image of a patient. The method may include receiving the medical image acquired by an imaging device. The method may further include detecting, by a processor, target objects and obtaining the corresponding target object patches from the received medical image. And the method may further include determining, by the processor, a first parameter using a first learning network for each target object patch. The first parameter represents the physiological condition level of the corresponding target object, and the first learning network is trained by adding one or more auxiliary classification layers. This method can quickly, accurately, and automatically predict target object level and/or image (patient) level physiological condition from a medical image of a patient by means of a learning network, such as 3D learning network.
-
3.
公开(公告)号:US10460447B2
公开(公告)日:2019-10-29
申请号:US15842402
申请日:2017-12-14
Applicant: Shenzhen Keya Medical Technology Corporation
Inventor: Qi Song , Hanbo Chen , Yujie Zhou , Youbing Yin , Yuwei Li
Abstract: Methods and systems for segmenting images having sparsely distributed objects are disclosed. A method may include: predicting object potential areas in the image using a preliminary fully convolutional neural network; segmenting a plurality of sub-images corresponding to the object potential areas in the image using a refinement fully convolutional neural network, wherein the refinement fully convolutional neural network is trained to segment images on a higher resolution compared to a lower resolution utilized by the preliminary fully convolutional neural network; and combining the segmented sub-images to generate a final segmented image.
-
4.
公开(公告)号:US20190080456A1
公开(公告)日:2019-03-14
申请号:US15842402
申请日:2017-12-14
Applicant: Shenzhen Keya Medical Technology Corporation
Inventor: Qi Song , Hanbo Chen , Yujie Zhou , Youbing Yin , Yuwei Li
Abstract: Methods and systems for segmenting images having sparsely distributed objects are disclosed. A method may include: predicting object potential areas in the image using a preliminary fully convolutional neural network; segmenting a plurality of sub-images corresponding to the object potential areas in the image using a refinement fully convolutional neural network, wherein the refinement fully convolutional neural network is trained to segment images on a higher resolution compared to a lower resolution utilized by the preliminary fully convolutional neural network; and combining the segmented sub-images to generate a final segmented image.
-
公开(公告)号:US20190050981A1
公开(公告)日:2019-02-14
申请号:US15996434
申请日:2018-06-02
Applicant: SHENZHEN KEYA MEDICAL TECHNOLOGY CORPORATION
Inventor: Qi Song , Shanhui Sun , Hanbo Chen , Junjie Bai , Feng Gao , Youbing Yin
Abstract: A computer-implemented method for automatically detecting a target object from a 3D image is disclosed. The method may include receiving the 3D image acquired by an imaging device. The method may further include detecting, by a processor, a plurality of bounding boxes as containing the target object using a 3D learning network. The learning network may be trained to generate a plurality of feature maps of varying scales based on the 3D image. The method may also include determining, by the processor, a set of parameters identifying each detected bounding box using the 3D learning network, and locating, by the processor, the target object based on the set of parameters.
-
-
-
-