SYSTEMS AND METHODS FOR INTEGRATING TOMOGRAPHIC IMAGE RECONSTRUCTION AND RADIOMICS USING NEURAL NETWORKS

    公开(公告)号:US20200380673A1

    公开(公告)日:2020-12-03

    申请号:US16621800

    申请日:2018-06-18

    Abstract: Computed tomography (CT) screening, diagnosis, or another image analysis tasks are performed using one or more networks and/or algorithms to either integrate complementary tomographic image reconstructions and radiomics or map tomographic raw data directly to diagnostic findings in the machine learning framework. One or more reconstruction networks are trained to reconstruct tomographic images from a training set of CT projection data. One or more radiomics networks are trained to extract features from the tomographic images and associated training diagnostic data. The networks/algorithms are integrated into an end-to-end network and trained. A set of tomographic data, e.g., CT projection data, and other relevant information from an individual is input to the end-to-end network, and a potential diagnosis for the individual based on the features extracted by the end-to-end network is produced. The systems and methods can be applied to CT projection data, MRI data, nuclear imaging data, ultrasound signals, optical data, other types of tomographic data, or combinations thereof.

    Systems and methods for integrating tomographic image reconstruction and radiomics using neural networks

    公开(公告)号:US11049244B2

    公开(公告)日:2021-06-29

    申请号:US16621800

    申请日:2018-06-18

    Abstract: Computed tomography (CT) screening, diagnosis, or another image analysis tasks are performed using one or more networks and/or algorithms to either integrate complementary tomographic image reconstructions and radiomics or map tomographic raw data directly to diagnostic findings in the machine learning framework. One or more reconstruction networks are trained to reconstruct tomographic images from a training set of CT projection data. One or more radiomics networks are trained to extract features from the tomographic images and associated training diagnostic data. The networks/algorithms are integrated into an end-to-end network and trained. A set of tomographic data, e.g., CT projection data, and other relevant information from an individual is input to the end-to-end network, and a potential diagnosis for the individual based on the features extracted by the end-to-end network is produced. The systems and methods can be applied to CT projection data, MRI data, nuclear imaging data, ultrasound signals, optical data, other types of tomographic data, or combinations thereof.

Patent Agency Ranking