Abstract:
Various embodiments provide methods implemented in a mobile communication device (e.g., a multi-RAT communication device) for maintaining at least one separate RGS value for each of a plurality of RATs operating on the mobile communication device. Specifically, a device processor on the mobile communication device (e.g., a crystal oscillator manager) may maintain a separate, up-to-date RGS value for each of the plurality of RATs and may associate each of the plurality of RATs with their respective RGS values. By keeping track of the plurality of RATs' respective RGS values, the device processor may ensure that an appropriate RGS value is used to facilitate each RAT's individual operations, such as acquisition/re-acquisition operations, sleep scheduling calculations, and handover/inter-RAT measurement operations. As a result, various embodiments may improve the performance of each RAT and the overall performance of the mobile communication device.
Abstract:
Various embodiments provide methods implemented in a mobile communication device (e.g., a multi-RAT communication device) for maintaining at least one separate RGS value for each of a plurality of RATs operating on the mobile communication device. Specifically, a device processor on the mobile communication device (e.g., a crystal oscillator manager) may maintain a separate, up-to-date RGS value for each of the plurality of RATs and may associate each of the plurality of RATs with their respective RGS values. By keeping track of the plurality of RATs' respective RGS values, the device processor may ensure that an appropriate RGS value is used to facilitate each RAT's individual operations, such as acquisition/re-acquisition operations, sleep scheduling calculations, and handover/inter-RAT measurement operations. As a result, various embodiments may improve the performance of each RAT and the overall performance of the mobile communication device.
Abstract:
Various embodiments for improving acquisition of services in multi-SIM mobile devices by using modified priorities for radio access technologies (RATs) in partial out-of-service conditions include determining when a first radio access technology (RAT) within a plurality of RATs begins to use a shared resource within the multi-SIM mobile device that is configured to be utilized by the plurality of RATs, determining whether a second RAT within the plurality of RATs was in-service or out of service at the time when the first RAT began using the shared resource, calculating a modified priority value for the second RAT in response to determining that the second RAT was in-service at the time, and determining an order for subsequent scanning for the services by the plurality of RATs based on the calculated modified priority value for the second RAT when the second RAT in-service at the time.