Abstract:
Methods and apparatus for controlling interference with regard to important control signals, e.g., synchronization signals and broadcast channel signals, are described. A configurable base station monitors for and receives signals from other base stations in its local vicinity and determines the implemented frame timings corresponding to the other deployed base stations. If possible, the configurable base station selects to use a frame timing offset which is different from the frame timing offsets being used by the other base stations. In some embodiments, symbol level and subframe level synchronization are maintained between the base stations; however, frame level synchronization may, and sometimes does vary. Different adjacent base stations may, and sometimes do, intentionally offset their frame boundaries by multiples of a subframe.
Abstract:
A communications system includes a plurality of different types of small coverage area base stations, e.g., femto cell base stations, WiFi access points and Bluetooth access points within a macro cell. Different user equipment (UE) devices, e.g., different smartphones, include different capabilities. In order for UE devices and small coverage area base stations with compatible capabilities to efficiently discover one another, the various small coverage area base stations and various UE devices utilize the macro cell communications band and macro cell communication protocol to coordinate device discovery and exchange discovery information and control information which allows a UE device to access a compatible small coverage area base station and subsequently communicate user data, e.g., traffic data, with the UE device.
Abstract:
Methods and apparatus are described for refining, e.g., reducing, a paging area corresponding to a user equipment device, e.g., a cellular inactive UE device. Various embodiments are well suited for communications systems in which user equipment devices participate in peer to peer communications networks in which direct user device to user device communications are employed. A user equipment device participating in a peer to peer network transmits discovery signals. A femto base station and/or a cellular active UE device in the local vicinity of the UE device transmitting the peer to peer discovery signal eavesdrops on the peer discovery signaling and detects the presence of the cellular inactive UE device. The detection of the cellular inactive UE device is reported to a MME. The MME determines a paging area corresponding to the detected UE device based on the reported information and the location of the reporting device.
Abstract:
A femto base station (BS) maintains two different timings: a femto BS downlink timing and a femto BS uplink timing. A femto base station's uplink reference timing is based on the macro uplink timing being used by one or more UE devices in the local vicinity of the femto BS. In some embodiments, the femto BS synchronizes its femto uplink timing to the macro uplink timing being used by the closest UE device transmitting uplink signals to the macro BS. In other embodiments, the femto BS determines its femto base station uplink timing based on one or more uplink signals from UE devices in its vicinity transmitting to the macro BS. In various embodiments, femto cell uplink signals and macro cell uplink signals are received at a femto cell BS in synchronization. This approach facilitates frequency division multiplexing (FDM) in the uplink between a macro cell and a femto cell.
Abstract:
A femto base station (BS) maintains two different timings: a femto BS downlink timing and a femto BS uplink timing. A femto base station's uplink reference timing is based on the macro uplink timing being used by one or more UE devices in the local vicinity of the femto BS. In some embodiments, the femto BS synchronizes its femto uplink timing to the macro uplink timing being used by the closest UE device transmitting uplink signals to the macro BS. In other embodiments, the femto BS determines its femto base station uplink timing based on one or more uplink signals from UE devices in its vicinity transmitting to the macro BS. In various embodiments, femto cell uplink signals and macro cell uplink signals are received at a femto cell BS in synchronization. This approach facilitates frequency division multiplexing (FDM) in the uplink between a macro cell and a femto cell.
Abstract:
Methods and apparatus that facilitate handover related measurements and decision making in a communications system including user equipment (UE) devices, a macro base station and femto base stations (femtocells) are described. In some embodiments a UE device transmits pilots along with identification information using UE device selected transmission resources from a set of recurring UE pilot transmission resources dedicated by a macro base station for UE pilot signal and related device information transmission purposes. Femto base stations measure the UE transmitted pilot signals and report the signal strength measurement results and corresponding device identifiers to a handoff decision control entity, e.g., an eNodeB or control node, which makes handover decisions. By relying on UE transmitted pilots measured by multiple base stations, e.g., femto base stations, the need for femto cells to transmit pilots can be reduced while well informed UE handoff decisions still being possible.