Abstract:
Aspects of the present disclosure include methods, apparatuses, and computer readable media for receiving an aggregate bandwidth configuration including, a downlink (DL) bandwidth configuration indicating DL resources for one or more DL receptions, and an uplink (UL) bandwidth configuration indicating UL resources for one or more UL transmissions, calculating a maximum power reduction backoff value based on the UL bandwidth configuration, and transmitting UL information for at least one of the one or more UL transmissions based on the maximum power reduction backoff value.
Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a repeater may receive a first signal from a transmitting device and determine an amplified version of the signal may not be successfully received by a receiving device. The repeater may transmit a mode switch message to the transmitting device to indicate a request for the transmitting device to switch to a transmission mode associated with one or more different transmission parameters based on detecting that the amplified version of the signal may not be received by the receiving device. The transmitting device may adjust one or more transmission parameters according to the mode switch message and may transmit a second signal to the repeater based on the adjusted transmission parameters. The repeater, operating according to the mode switch message, may receive the second signal and transmit an amplified version of the second signal to the receiving device.
Abstract:
This disclosure provides systems, methods and apparatuses for adding and releasing secondary cells in a multi-cell connectivity configuration. In one aspect, a user equipment (UE) may transmit UE assistance information to a base station (BS) operating as a master cell in a multi-cell connectivity configuration. The UE assistance information may indicate a process that the BS is to use to add a secondary cell to the multi-cell connectivity configuration, may indicate a time gap for adding a secondary cell after another secondary cell is released from the multi-cell connectivity configuration, as well as other multi-cell connectivity configuration information. The BS may receive the UE assistance information and may add a secondary cell to the multi-cell connectivity configuration based at least in part on the indicated process and time gap.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for interference mitigation techniques between wireless communications and aircraft radio altimeters. In some aspects, a user equipment (UE) and a network entity may support one or more signaling- or configuration-based interference avoidance mechanisms associated with usage of a C-band at one or both of the UE and the network entity. The UE may support a capability according to which the UE is able to monitor a frequency band used by aircraft radio altimeters and the UE may request a modification to a C-band connection (such as request a release of the C-band connection) if the UE detects or measures signaling from an aircraft radio altimeter. Similarly, the network entity may modify the C-band connection if the network entity receives the request from the UE or itself detects or measures signaling from an aircraft radio altimeter.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a configuration for connected discontinuous reception (CDRX), the configuration indicating a first condition associated with a first CDRX parameter and a second condition associated with a second CDRX parameter. The UE may transition to a CDRX cycle when the first condition and the second condition are satisfied prior to an expiration of a CDRX inactivity timer. Numerous other aspects are described.
Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a repeater may receive a first signal from a transmitting device and determine an amplified version of the signal may not be successfully received by a receiving device. The repeater may transmit a mode switch message to the transmitting device to indicate a request for the transmitting device to switch to a transmission mode associated with one or more different transmission parameters based on detecting that the amplified version of the signal may not be received by the receiving device. The transmitting device may adjust one or more transmission parameters according to the mode switch message and may transmit a second signal to the repeater based on the adjusted transmission parameters. The repeater, operating according to the mode switch message, may receive the second signal and transmit an amplified version of the second signal to the receiving device.
Abstract:
Methods, systems, and devices for wireless communications are described. The method includes transmitting, to a base station based on a parameter of a configuration of the UE, a first HARQ feedback configuration or a request to modify the configuration of the UE, or both, the configuration of the UE including a carrier aggregation configuration and receiving, from the base station based on transmitting the first HARQ feedback configuration or request to modify the configuration of the UE, or both, a second HARQ feedback configuration or reconfiguration.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus relating to minimizing interference by controlling beam width of a wireless device. In certain aspects, a method of minimizing interference by controlling beam width of a wireless device, such as a user equipment (UE), includes configuring antenna elements of the UE to communicate in a serving cell using a first beam, monitoring a channel quality metric in the serving cell, and re-configuring the antenna elements of the UE to perform mobility measurements of one or more neighboring cells using a second beam broader than the first beam if the metric falls below a threshold value.
Abstract:
Methods and apparatuses are provided for selecting an operating frequency from available frequencies/channels for a small cell. A set of candidate operating frequencies is determined from a plurality of available operating frequencies as having an interference cost less than a first threshold and a coupling cost less than a second threshold. The small cell can then select a candidate operating frequency of the set of candidate operating frequencies having a lowest interference cost as the operating frequency.
Abstract:
Methods and apparatuses are provided for selecting an operating frequency from available frequencies/channels for a small cell. A set of candidate operating frequencies is determined from a plurality of available operating frequencies as having an interference cost less than a first threshold and a coupling cost less than a second threshold. The small cell can then select a candidate operating frequency of the set of candidate operating frequencies having a lowest interference cost as the operating frequency.