Abstract:
Systems and methods for hybrid call setup in a wireless communication system are disclosed. A page is sent on a first network informing a target device of a pending communication on a second network. The page also informs the target device a short data burst (SDB) will be sent on the first network. The short data burst (SDB) is sent on the first network containing setup information regarding the pending communication on the second network.
Abstract:
In various embodiments, a mobile device and/or the presence-aware applications running on the device may be configured to support multiple user profiles. For instance, multiple users with access to the same mobile device may each create a user profile and login credentials on that device, and each user may take turns using the mobile device. The mobile device may also allow multiple users to access the mobile device simultaneously. In such embodiments, the mobile device processor executing the presence module and/or presence engine may be configured to associate a particular user profile with a request for updated presence information and determine whether to update the presence information based at least in part on the that user profile.
Abstract:
Systems and techniques are described herein for network organization. For instance, a process can include receiving, from a second sensing apparatus of the self-organizing network, an indication of a first task. The process can further include retrieving a first power profile associated with the first task, determining a current battery level of the at least one battery, predicting a future battery level of the at least one battery based on the current battery level, and the first power profile associated with the first task, and transmitting, to another sensing apparatus, the predicted future battery level.
Abstract:
Methods and systems for sending multicast messages are disclosed. A multicast message is received to be transmitted to a plurality of access terminals at a radio access network (RAN), the received multicast message having a first format. The first format may correspond to a conventional multicast message format. The RAN determines whether the received multicast message requires special handling. If the RAN determines the received multicast message requires special handling, the radio access network converts the received multicast message from the first format into a second format. The RAN transmits the converted multicast message with the second format (e.g., a data over signaling (DOS) message) on a control channel to at least one of the plurality of access terminals. The access terminals receiving the converted multicast message interpret the message as a multicast message.
Abstract:
Methods and systems for sending multicast messages are disclosed. A multicast message is received to be transmitted to a plurality of access terminals at a radio access network (RAN), the received multicast message having a first format. The first format may correspond to a conventional multicast message format. The RAN determines whether the received multicast message requires special handling. If the RAN determines the received multicast message requires special handling, the radio access network converts the received multicast message from the first format into a second format. The RAN transmits the converted multicast message with the second format (e.g., a data over signaling (DOS) message) on a control channel to at least one of the plurality of access terminals. The access terminals receiving the converted multicast message interpret the message as a multicast message.
Abstract:
Methods and systems for sending multicast messages are disclosed. A multicast message is received to be transmitted to a plurality of access terminals at a radio access network (RAN), the received multicast message having a first format. The first format may correspond to a conventional multicast message format. The RAN determines whether the received multicast message requires special handling. If the RAN determines the received multicast message requires special handling, the radio access network converts the received multicast message from the first format into a second format. The RAN transmits the converted multicast message with the second format (e.g., a data over signaling (DOS) message) on a control channel to at least one of the plurality of access terminals. The access terminals receiving the converted multicast message interpret the message as a multicast message.
Abstract:
Methods and systems for sending multicast messages are disclosed. A multicast message is received to be transmitted to a plurality of access terminals at a radio access network (RAN), the received multicast message having a first format. The first format may correspond to a conventional multicast message format. The RAN determines whether the received multicast message requires special handling. If the RAN determines the received multicast message requires special handling, the radio access network converts the received multicast message from the first format into a second format. The RAN transmits the converted multicast message with the second format (e.g., a data over signaling (DOS) message) on a control channel to at least one of the plurality of access terminals. The access terminals receiving the converted multicast message interpret the message as a multicast message.
Abstract:
In an example, an access terminal sends a group member report to an access network, the group member report indicating a location of the access terminal and at least one multicast group, the group member report being sent before a multicast session associated with the multicast group is initiated, determines a location update rule, the location update rule being a manner in which to report location updates of the access terminal to the access network and reports location updates of the access terminal to the access network based on the determined location update rule.
Abstract:
An embodiment is directed to an access network that configures set of paging indicator (PI) bits within a quick paging channel (QPCH) cycle to page a group of access terminals. An access terminal within the group receives the QPCH cycle, and evaluates the PI bits to determine whether a unicast page and/or group page is present. Another embodiment is directed to selecting less than all timeslots in one or more control channel cycles of a downlink control channel, and configuring a page message to convey the selected timeslots to an access terminal. The access terminal receives the configured page message and decodes information only within the selected timeslots. Another embodiment is directed to generating a transport-layer message for transmission to at least one access terminal, and configuring the transport-layer message by modifying an application-layer portion of the transport-layer message. An access terminal receives the message and extracts the application-layer portion.
Abstract:
Aspects of managing acknowledgment transmissions from multicast group members of a multicast group within a wireless communications network are disclosed. An access network transmits an announce message announcing a multicast session to a plurality of access terminals. One of the plurality of access terminals (i.e., a first responder) sends a BCMCSFlowRegistration message and an announce acknowledgment (ACK) message to the access network. In an example, the BCMCSFlowRegistration message and announce ACK message are sent within the same access probe on a reverse link access channel. Next, the access network sends, in response to the received BCMCSFlowRegistration message, a suppression message to request access terminals not to send announce acknowledgment messages for the announced multicast session. Alternatively, an application server sends the suppression message in response to the received announce ACK message. In either scenario, the access terminals receiving the suppression message suppress transmission of subsequent announce ACK messages.