Abstract:
A motorized window treatment provides a low-cost solution for controlling the amount of daylight entering a space through a window. The window treatment includes a covering material, a drive shaft, at least one lift cord rotatably received around the drive shaft and connected to the covering material, and a motor coupled to the drive shaft for raising and lowering the covering material. The window treatment also includes a spring assist unit for assisting the motor by providing a torque that equals the torque provided by the weight on the cords that lift the covering material at a position midway between fully-open and fully-closed positions, which helps to minimize motor usage and conserve battery life if a battery is used to power the motorized window treatment. The window treatment may comprise a photosensor for measuring the amount of daylight outside the window and temperature sensors for measuring the temperatures inside and outside of the window. The position of the covering material may be automatically controlled in response to the photosensor and the temperature sensors to save energy, or may also be controlled in response to an infrared or radio-frequency remote control.
Abstract:
A motorized window treatment provides a low-cost solution for controlling the amount of daylight entering a space through a window. The window treatment includes a covering material, a drive shaft, at least one lift cord rotatably received around the drive shaft and connected to the covering material, and a motor coupled to the drive shaft for raising and lowering the covering material. The window treatment also includes a spring assist unit for assisting the motor by providing a torque that equals the torque provided by the weight on the cords that lift the covering material at a position midway between fully-open and fully-closed positions, which helps to minimize motor usage and conserve battery life if a battery is used to power the motorized window treatment. The window treatment may comprise a photosensor for measuring the amount of daylight outside the window and temperature sensors for measuring the temperatures inside and outside of the window. The position of the covering material may be automatically controlled in response to the photosensor and the temperature sensors to save energy, or may also be controlled in response to an infrared or radio-frequency remote control.
Abstract:
A motorized roller tube for reeling and unreeling a flexible member between fully open and fully closed conditions operates with minimized sound level. A variable controller energizes a motor with a controllable RPM driving a gear reduction assembly. The motor has a speed versus torque characteristic which extends linearly from a high maximum RPM and low minimum torque, to a low minimum RPM and high maximum torque, and having a peak efficiency at a given RPM. The motor moves the flexible member between its fully open and fully closed positions at a motor speed less than the given peak efficiency RPM and less than 50% of its high maximum RPM, and at a motor efficiency which is less than 25% of the peak efficiency whereby the motor is intentionally operated in a high torque and low efficiency manner.
Abstract:
A motorized window treatment may provide a low-cost solution for controlling the amount of daylight entering a space through a window. The window treatment may include a covering material (e.g., a cellular shade fabric or a roller shade fabric), a drive assembly for raising and lowering the covering material, and a motor drive unit including a motor configured to drive the drive assembly to raise and lower the covering material. The motorized window treatment may comprise one or more battery packs configured to receive batteries for powering the motor drive unit. The batteries may be located out of view of a user of the motorized window treatment (e.g., in a headrail or in a battery compartment). The motorized window treatment may use various power-saving methods to lengthen the lifetime of the batteries, e.g., to reduce the motor speed to conserve additional battery power and extend the lifetime of the batteries.
Abstract:
A motorized window treatment may provide a low-cost solution for controlling the amount of daylight entering a space through a window. The window treatment may include a covering material (e.g., a cellular shade fabric or a roller shade fabric), a drive assembly for raising and lowering the covering material, and a motor drive unit including a motor configured to drive the drive assembly to raise and lower the covering material. The motorized window treatment may comprise one or more battery packs configured to receive batteries for powering the motor drive unit. The batteries may be located out of view of a user of the motorized window treatment (e.g., in a headrail or in a battery compartment). The motorized window treatment may use various power-saving methods to lengthen the lifetime of the batteries, e.g., to reduce the motor speed to conserve additional battery power and extend the lifetime of the batteries.
Abstract:
A motorized roller tube for reeling and unreeling a flexible member between fully open and fully closed conditions operates with minimized sound level. A variable controller energizes a motor with a controllable RPM driving a gear reduction assembly. The motor has a speed versus torque characteristic which extends linearly from a high maximum RPM and low minimum torque, to a low minimum RPM and high maximum torque, and having a peak efficiency at a given RPM. The motor moves the flexible member between its fully open and fully closed positions at a motor speed less than the given peak efficiency RPM and less than 50% of its high maximum RPM, and at a motor efficiency which is less than 25% of the peak efficiency whereby the motor is intentionally operated in a high torque and low efficiency manner.
Abstract:
A motorized window treatment may provide a low-cost solution for controlling the amount of daylight entering a space through a window. The window treatment may include a covering material (e.g., a cellular shade fabric or a roller shade fabric), a drive assembly for raising and lowering the covering material, and a motor drive unit including a motor configured to drive the drive assembly to raise and lower the covering material. The motorized window treatment may comprise one or more battery packs configured to receive batteries for powering the motor drive unit. The batteries may be located out of view of a user of the motorized window treatment (e.g., in a headrail or in a battery compartment). The motorized window treatment may use various power-saving methods to lengthen the lifetime of the batteries, e.g., to reduce the motor speed to conserve additional battery power and extend the lifetime of the batteries.
Abstract:
A motorized window treatment provides a low-cost solution for controlling the amount of daylight entering a space through a window. The window treatment includes a covering material, a drive shaft, at least one lift cord rotatably received around the drive shaft and connected to the covering material, and a motor coupled to the drive shaft for raising and lowering the covering material. The window treatment also includes a spring assist unit for assisting the motor by providing a torque that equals the torque provided by the weight on the cords that lift the covering material at a position midway between fully-open and fully-closed positions, which helps to minimize motor usage and conserve battery life if a battery is used to power the motorized window treatment. The window treatment may comprise a photosensor for measuring the amount of daylight outside the window and temperature sensors for measuring the temperatures inside and outside of the window. The position of the covering material may be automatically controlled in response to the photosensor and the temperature sensors to save energy, or may also be controlled in response to an infrared or radio-frequency remote control.
Abstract:
A veneer configured to be secured to a backlit button of a control device may include a plate portion. The plate portion may have one or more laser-cut indicia defined therethrough, may have laser-cut rounded corners, and may have angularly offset outer edges that may be defined during an embossing process. The laser-cut indicia may be representative of a command for controlling an electrical load. The indicia may include an alphanumeric character, an icon, or the like, may define one or more substantially zero-radius corners, and may define respective inner surfaces that are substantially perpendicular to an outer surface of the plate portion. A laser-cut alphanumeric character may have variable (e.g., continuously variable) line width. The plate portion may define a rib that suspends a floating portion of the alphanumeric character relative to an open portion. The rib may define a thickness that does not exceed 0.003 inches.