Abstract:
A colorless, directionless ROADM includes a pair of contentioned add and drop wavelength-selective optical switches, an input wavelength-selective optical switch having one input port, and an output wavelength-selective optical switch having one output port. Unintended input-to-output port couplings, which appear in the “contentioned” add and drop switches, can be mitigated by the input and output wavelength-selective optical switches carrying the through traffic.
Abstract:
A multicast optical switch uses a diffractive bulk optical element, which splits at least one input optical beam into sub-beams, which freely propagate in a medium towards an array of directors, such as MEMS switches, for directing the sub-beams to output ports. Freely propagating optical beams can cross each other without introducing mutual optical loss. The amount of crosstalk is limited by scattering in the optical medium, which can be made virtually non-existent. Therefore, the number of the crossover connections, and consequently the number of inputs and outputs of a multicast optical switch, can be increased substantially without a loss or a crosstalk penalty.
Abstract:
A method may include receiving, by a switching engine, an optical signal. The optical signal may carry a super-channel that includes a plurality of sub-carriers to be directed toward respective output ports. The switching engine may have a plurality of regions of pixels on which respective sub-carriers, of the plurality of sub-carriers, are incident. The method may include applying, by the switching engine, respective single beam steering gratings to first, overlapping, areas of the plurality of regions of pixels. The method may include applying, by the switching engine, one or more respective pluralities of beam steering gratings to second, overlapping areas of the plurality of regions of pixels. The method may include directing, based on the single beam steering gratings and the one or more pluralities of beam steering gratings, parts of the optical signal toward the respective output ports.
Abstract:
In some implementations, an amplifier device may include a first amplifier configured to amplify signals in a first range of optical wavelengths. The first amplifier may include a first portion that includes one or more first optical gain components, and a second portion that includes one or more second optical gain components and a variable optical attenuator. The amplifier device may include a second amplifier configured to amplify signals in a second range of optical wavelengths. The amplifier device may include a filter for the first range of optical wavelengths and the second range of optical wavelengths. The filter may be located between the first portion and the second portion of the first amplifier.
Abstract:
An optical device may include a monolithic beam steering engine. The device may include a twin M×N wavelength selective switch (WSS) including a first M×N WSS and a second M×N WSS. The first M×N WSS may include a first panel section of the monolithic beam steering engine to perform first beam steering of first beams, wherein the first beam steering is add/drop port beam steering; and a second panel section of the monolithic beam steering engine to perform second beam steering of second beams, wherein the second beam steering is common port beam steering. The first M×N WSS may include a first optical element aligned to the monolithic beam steering engine to direct one of the first beams or the second beams relative to the other of the first beams or the second beams, such that the first beams are directed in a different direction from the second beams.
Abstract:
A method may include receiving, by a switching engine, an optical signal that includes a channel. The method may include applying, by the switching engine, a first beam steering grating to direct a first portion of the channel to a first output port. The method may include applying, by the switching engine, one or more second beam steering gratings to direct at least one of a second portion of the channel to a second output port, or a third portion of the channel to a photodetector. The third portion may be approximately less, in power, than 10 percent of the channel.
Abstract:
A method may include receiving, by a switching engine, an optical signal. The optical signal may carry a super-channel that includes a plurality of sub-carriers to be directed toward respective output ports. The switching engine may have a plurality of regions of pixels on which respective sub-carriers, of the plurality of sub-carriers, are incident. The method may include applying, by the switching engine, respective single beam steering gratings to first, overlapping, areas of the plurality of regions of pixels. The method may include applying, by the switching engine, one or more respective pluralities of beam steering gratings to second, overlapping areas of the plurality of regions of pixels. The method may include directing, based on the single beam steering gratings and the one or more pluralities of beam steering gratings, parts of the optical signal toward the respective output ports.
Abstract:
A scalable multicast M×N optical switch (MCS) includes a non-scalable MCS having a plurality of (L+1)×1 selector switches east coupled at one of its L entrance ports to egress ports of the non-scalable MCS, the remaining L−1 entrance ports being coupled to an L*N upgrade ports, where M and N are integers ≧2, and L is an integer ≧1. This allows the scalable MCS to be cascaded in a daisy-chain fashion, providing scalability from the M common ports to L*M common ports. In another embodiment, the selector switches are integrated into the MCS, providing scalability of common MCS ports.