摘要:
The invention concerns flow batteries comprising: a first half-cell comprising: (i) a first aqueous electrolyte comprising a first redox active material; and a first carbon electrode in contact with the first aqueous electrolyte; (ii) a second half-cell comprising: a second aqueous electrolyte comprising a second redox active material; and a second carbon electrode in contact with the second aqueous electrolyte; and (iii) a separator disposed between the first half-cell and the second half-cell; the first half-cell having a half-cell potential equal to or more negative than about −0.3 V with respect to a reversible hydrogen electrode; and the first aqueous electrolyte having a pH in a range of from about 8 to about 13, wherein the flow battery is capable of operating or is operating at a current density at least about 25 mA/cm2.
摘要翻译:本发明涉及流动电池,包括:第一半电池,包括:(i)第一含水电解质,其包含第一氧化还原活性材料; 和与第一含水电解质接触的第一碳电极; (ii)第二半电池,包括:包含第二氧化还原活性材料的第二含水电解质; 和与第二含水电解质接触的第二碳电极; 和(iii)设置在第一半电池和第二半电池之间的隔板; 所述第一半电池相对于可逆氢电极具有等于或大于约-0.3V的半电池电位; 并且所述第一含水电解质的pH在约8至约13的范围内,其中所述流动电池能够以至少约25mA / cm 2的电流密度操作或正在其操作。
摘要:
This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.
摘要:
This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.
摘要:
This invention is directed to aqueous redox flow batteries comprising ionically charged redox active materials and ionomer membranes, wherein the charge of the redox active materials is of the same sign as that of the ionomer, so as to confer specific improvements.
摘要:
The invention concerns flow batteries comprising: a first aqueous electrolyte comprising a first redox active material; a second aqueous electrolyte comprising a second redox active material; a first electrode in contact with the first aqueous electrolyte; a second electrode in contact with the second aqueous electrolyte and a separator disposed between the first aqueous electrolyte and the second aqueous electrolyte; the flow battery having an open circuit potential of at least 1.4 V, and is capable of operating or is operating at a current density at least about 50 mA/cm2, wherein both of the first and second redox active materials remain soluble in both the charged and discharged states. In certain embodiments, the redox active materials are metal ligand coordination compounds. The disclosure also describes systems comprising these flow batteries and methods of them.
摘要:
This invention is directed to aqueous redox flow batteries comprising ionically charged redox active materials and separators, wherein the separator is about 100 microns or less and the flow battery is capable of (a) operating with a current efficiency of at least 85% with a current density of at least about 100 mA/cm2; (b) operating with a round trip voltage efficiency of at least 60% with a current density of at least about 100 mA/cm2; and/or (c) giving rise to diffusion rates through the separator for the first active material, the second active material, or both, of about 1×10−7 mol/cm2-sec or less.
摘要:
This invention is directed to aqueous redox flow batteries comprising redox-active metal ligand coordination compounds. The compounds and configurations described herein enable flow batteries with performance and cost parameters that represent a significant improvement over that previous known in the art.