Abstract:
A vacuum cleaner may include a cleaner body having a suction motor and a suctioning portion configured to be in communication with the cleaner body and to suction air and dust. One of a battery assembly having a battery or a cord reel assembly having a power cord may be installed in the cleaner body. The vacuum cleaner may also include a controller to control the suction motor by modifying a pulse width modulation (PWM) duty cycle of an inverter providing power to the suction motor based on whether the battery assembly or the cord reel assembly is installed in the cleaner body.
Abstract:
The laundry treatment machine includes an inverter to convert direct current (DC) voltage into alternating current (AC) voltage and to output the AC voltage to a motor. The laundry treatment machine includes an inverter controller to control the inverter to supply current corresponding to a direction opposite to back electromotive force generated from the motor to the motor so as to align the motor during a starting operation of the motor. It is feasible to rapidly align a rotor of the motor during the starting operation of the motor.
Abstract:
A control circuit includes: a converter configured to convert alternating current (AC) power into direct current (DC) power, an inverter configured to generate driving power of at least one motor using the converted DC power, and a first core formed by winding a coil by a number of windings determined in correspondence with an impedance of the at least one motor. The number of windings is determined such that an impedance of the first core is inversely proportional to the impedance of the at least one motor and a driving power line for driving the at least one motor passes through a center of the first core.
Abstract:
The laundry treatment machine; absent a position sensor to sense a rotor position, includes a driving unit having a DC/AC inverter, an output voltage detection unit to detect output voltage applied to the motor, and an inverter controller to control the inverter to drive the motor based on the output voltage. The output voltage detection unit includes a plurality of resistors electrically connected between the inverter and the motor and a comparator to compare voltage detected by some of the resistors with reference voltage and to detect pulse width modulation (PWM)-based output voltage. Based on the PWM-based output voltage at least one switching device of the inverter is turned on. The output voltage detection unit outputs voltage detected by other some of the resistors to the inverter controller in a second mode in which all switching devices of the inverter are turned off.
Abstract:
A home appliance is disclosed, including a first circuit unit including a converter configured to convert an Alternating Current (AC) power into a Direct Current (DC) power, a first coil, a first modulator/demodulator configured to wirelessly transmit the DC power generated by the converter using the first coil, and a first controller configured to control the first modulator/demodulator, and a second circuit including a second coil configured to receive a wireless power transmitted by the first circuit unit, a second modulator/demodulator configured to convert the wireless power received from the second coil, a rectifier configured to rectify an AC power generated by the second modulator/demodulator, and a second controller configured to control operation of the second modulator/demodulator, wherein the first modulator/demodulator and the second modulator/demodulator perform bidirectional time-division data communication.
Abstract:
A home appliance is disclosed, including a motor, a drive unit configured to drive the motor, a first circuit unit including a main controller configured to control the drive unit, a display unit, and a second circuit unit including a display controller configured to control the display unit. The first circuit unit transmits wireless power to the second circuit unit, using a first frequency, and the second circuit unit transmits data to the first circuit unit, using a second frequency different from the first frequency. Thereby, wireless power transmission and bidirectional communication are performed between the first and second circuit units.
Abstract:
A surge protection circuit includes: a power supply unit configured to supply first power, a filter unit configured to filter noise of the first power while a current corresponding to a surge flows through the filter unit, a motor unit provided with at least one motor, a control unit configured to control the motor unit according to an operation mode, and a rectification unit provided with at least one protection capacitor and configured to rectify the filtered first power into second power. The filter unit is connected with a ground to thereby apply the current to the filter unit through the ground. A first impedance is generated by the filter unit and the rectification unit and a second impedance is generated by the control unit and the motor unit and a value of the first impedance is less than a value of the second impedance.
Abstract:
The laundry treatment machine; absent a position sensor to sense a rotor position, includes a driving unit having a DC/AC inverter, an output voltage detection unit to detect output voltage applied to the motor, and an inverter controller to control the inverter to drive the motor based on the output voltage. The output voltage detection unit includes a plurality of resistors electrically connected between the inverter and the motor and a comparator to compare voltage detected by some of the resistors with reference voltage and to detect pulse width modulation (PWM)-based output voltage. Based on the PWM-based output voltage at least one switching device of the inverter is turned on. The output voltage detection unit outputs voltage detected by other some of the resistors to the inverter controller in a second mode in which all switching devices of the inverter are turned off.
Abstract:
The laundry treatment machine includes an inverter to convert direct current (DC) voltage into alternating current (AC) voltage and to output the AC voltage to a motor. The laundry treatment machine includes an inverter controller to control the inverter to supply current corresponding to a direction opposite to back electromotive force generated from the motor to the motor so as to align the motor during a starting operation of the motor. It is feasible to rapidly align a rotor of the motor during the starting operation of the motor.