Abstract:
The present invention relates to a micropump which is driven by movement of a liquid drop based upon continuous electrowetting actuation. The continuous electrowetting means a phenomenon that the liquid drop moves as the surface tension of the liquid drop is electrically varied in succession. When a tube in which electrolyte and a liquid metal drop are inserted is applied with voltage having periodically changing polarity via metal electrodes, the surface tension of the liquid metal is varied so that the liquid metal drop reciprocates in the tube generating pressure or force, which is used as a driving force of the micropump. The micropump is operated in a low voltage and consumes a small amount of electric power.
Abstract:
Disclosed is a micromirror actuator having a two-axis freedom and actuated by an electromagnetic force and fabrication method thereof. The micromirror actuator includes a substrate, a frame configured to be connected with the substrate, a micromirror configured to be connected with the frame, first and second torsion bars connecting the substrate with the frame, third and fourth torsion bars connecting the frame with the micromirror, four interdigitated cantilevers configured to be connected to the substrate, four connecting bars connecting the four interdigitated cantilevers with the frame, interconnection lines formed on the four interdigitated cantilevers and the micromirror, and first and second magnets installed outside the substrate. since the micromirror actuator of the present invention can be actuated around two axes by electromagnetic force generated by electromagnetic field applied from outside, it is possible to obtain large force and large rotational angle. In addition, the micromirror actuator has a mechanically robust structure endurable against external impact, and is operable at a low voltage of 5V or loss. Further, it is possible to obtain a flat mirror surface sine the upper silicon layer of the SOI substrate is used as the mirror surface.