Abstract:
An apparatus includes a memory and a processor operatively coupled to the memory. The processor is configured to partition a set of ports of an optical multiplexer into a set of port groups including a first port group having a first set of ports and a second port group having a second set of ports mutually exclusive from the first set of ports. The processor is configured to associate the first port group with a first router and associate the second port group with a second router. When the optical multiplexer is operatively coupled to the first router and the second router, the first router is operatively coupled to the optical multiplexer via the first set of ports and not the second set of ports, and the second router is operatively coupled to the optical multiplexer via the second set of ports and not the first set of ports.
Abstract:
A device may store, in a data structure, a set of link identifiers, that identifies a set of member links included in a link aggregation group, in association with a set of packet parameters. The device may receive a network packet. The device may determine a particular packet parameter, of the set of packet parameters, associated with the network packet. The device may route the network packet via a particular member link, of the set of member links, identified by the particular link identifier.
Abstract:
A device may store, in a data structure, a set of link identifiers, that identifies a set of member links included in a link aggregation group, in association with a set of packet parameters. The device may receive a network packet. The device may determine a particular packet parameter, of the set of packet parameters, associated with the network packet. The device may route the network packet via a particular member link, of the set of member links, identified by the particular link identifier.
Abstract:
In some embodiments a method includes receiving, at a first network device, a data unit to be sent to second network device via a tunnel, the data unit associated with an application. The method includes appending, to the data unit, an encapsulation header that includes a first portion configured such that the second network device is configured to forward the data unit based on the second portion of the encapsulation header that is configured to identify the application. The method includes sending, from the first network device to the second network device via a first portion of the tunnel, the data unit such that the second network device appends the encapsulation header to the data unit prior to forwarding the data unit via a second portion of the tunnel.
Abstract:
An aggregation device may detect a change to a status of a campus network. The campus network may include a set of satellite clusters. Each satellite cluster, of the set of satellite clusters, may include one or more satellite devices. The aggregation device may generate one or more satellite cluster specific control messages (SCSCMs) to update the campus network based on detecting the change to the status of the campus network. The one or more SCSCMs may include at least one of a control-and-status protocol (CSP) message, or a link layer discovery protocol (LLDP) message. The aggregation device may include information relating to the set of satellite clusters in a configurable portion of the one or more SCSCMs. The aggregation device may transmit the one or more SCSCMs with a border satellite device, of the one or more satellite devices, to update the campus network.
Abstract:
In one embodiment, an apparatus can include a filter module configured to receive multiple Media Access Control (MAC) addresses associated with multiple virtual ports instantiated at a first network device. Each virtual port from the multiple virtual ports can be associated with a MAC address from the multiple MAC addresses. The filter module can be configured to define a filter to be applied to a data frame sent between the first network device and a network switch, the filter being based at least in part on a MAC address prefix included in each MAC address from the plurality of MAC addresses. The MAC address prefix can include an identifier uniquely associated with a second network device at which the filter module operates.
Abstract:
Techniques are described for supporting Fiber Channel over Ethernet (FCoE) link aggregation groups (LAGs) between a server and a data center switch in a data center. The techniques enable an access switch in the data center switch to assign class identifiers to each member link in an FCoE LAG between an FCoE node (Enode) of the server and the access switch. In this way, the access switch is able to redirect FCoE traffic from a Fiber Channel forwarder (FCF) of a storage area network (SAN) toward the Enode on the correct member link of the FCoE LAG. The techniques also enable scaling of FCoE initialization protocol (FIP) and FCoE sessions by installing FIP snooping filters that use on a source media access control (MAC) address hit determination in ingress filter processors (IFPs) of the access switch to avoid session limitations of virtual local area network (VLAN) filter processors (VFPs).
Abstract:
In some embodiments, a system includes a set of network control entities associated with a distributed multi-stage switch. Each network control entity from the set of network control entities is configured to manage at least one edge device having a set of ports and coupled to the distributed multi-stage switch. Each network control entity from the set of network control entities is associated with a unique set of identifiers. A network control entity from the set of network control entities is configured to assign a unique identifier from its unique set of identifiers to a port from the set of ports of the at least one edge device in response to the network control entity receiving a login request associated with the port.
Abstract:
In one embodiment, an apparatus includes a switching policy module configured to define a switching policy associating a Fiber Channel port with a destination Media Access Control (MAC) address. The switching module can be configured to receive a Fiber Channel over Ethernet (FCoE) frame from a network device and send a Fiber Channel frame encapsulated in the FCoE frame to the Fiber Channel port based at least in part on the switching policy and a destination MAC address of the FCoE frame.
Abstract:
A device may receive network traffic for transmission in a campus network. The campus network may include a set of aggregation devices and a set of satellite devices. The set of satellite devices may be grouped into a set of satellite clusters of the campus network. The device may generate a packet header for the network traffic. The packet header may include an E-channel identifier (ECID) with a quantity of N bits (N>10) reserved to address a packet to a particular satellite device of the set of satellite devices and to a particular port of a set of ports of the particular satellite device. The device may transmit the network traffic using the packet header based on generating the packet header.