Abstract:
In accordance with one embodiment, a magnetic head includes a main pole configured to emit a recording magnetic field for affecting a magnetic medium, spin torque oscillator (STO) device in electrical communication with and positioned above the main pole in a track direction, the STO device being configured to generate a high-frequency magnetic field which is superimposed with the recording magnetic field in order to record data to the magnetic medium when current flows to the STO device, and a heat sink positioned near the STO device, the heat sink being configured to reduce a temperature of the STO device when current flows to the STO device. In another embodiment, a method includes forming a heat sink behind a STO device in an element height direction perpendicular to a media facing surface, and/or on both sides of the STO device in a cross-track direction at the media facing surface.
Abstract:
A magnetic disk drive system configured for shingled magnetic data recording wherein data tracks are recorded in an overlapping fashion on a magnetic media. The disk drive system includes magnetic write heads that are asymmetric so as to have increased writing at one side of the write head. The magnetic disk drive system includes magnetic write heads that are mirror images of one another so that write heads located at opposite surfaces of the magnetic media (e.g. one head facing up and one facing down) end up having preferential writing in the location relative to inner and outer diameters of the magnetic media.
Abstract:
A hard-disk drive having a structurally efficient magnetic head slider utilizes a MAMR-based spin torque oscillator (STO) for head-disk contact detection and for flying height sensing. Contact detection and spacing estimation techniques consider the nominal temperature difference, and thus different criteria, between read and write operations.
Abstract:
A method, apparatus, and system are provided for implementing a power-on spin-torque oscillator (STO) oscillation checker to monitor STO resistance to identify STO oscillation with microwave assisted magnetic recording (MAMR) hard disk drives (HDDs). A changing bias current is applied to the STO in the presence of constant write drive current. The STO bias current is changed to observe sudden changes in STO resistance monitored using a differentiator circuit to identify STO oscillation, used to ensure stable MAMR HDD write operation.
Abstract:
A method, apparatus, and system for implementing spin integrated spin-torque oscillator (STO) with an interface bias control for hard disk drives. Bias circuitry for a spin-torque oscillator (STO) is integrated with a slider for microwave assisted magnetic recording (MAMR). The slider includes read and write transducers and the integrated STO bias circuitry controls a bias potential applied to a write return pole to the write transducer with respect to a disk.
Abstract:
A hard-disk drive having a structurally efficient magnetic head slider utilizes a MAMR-based spin torque oscillator (STO) for head-disk contact detection and for flying height sensing. Contact detection and spacing estimation techniques consider the nominal temperature difference, and thus different criteria, between read and write operations.
Abstract:
A magnetic disk drive system configured for shingled magnetic data recording wherein data tracks are recorded in an overlapping fashion on a magnetic media. The disk drive system includes magnetic write heads that are asymmetric so as to have increased writing at one side of the write head. The magnetic disk drive system includes magnetic write heads that are mirror images of one another so that write heads located at opposite surfaces of the magnetic media (e.g. one head facing up and one facing down) end up having preferential writing in the location relative to inner and outer diameters of the magnetic media.
Abstract:
In accordance with one embodiment, a magnetic head includes a main pole configured to emit a recording magnetic field for affecting a magnetic medium, a spin torque oscillator (STO) device in electrical communication with and positioned above the main pole in a track direction, the STO device being configured to generate a high-frequency magnetic field which is superimposed with the recording magnetic field in order to record data to the magnetic medium when current flows to the STO device, and a heat sink positioned near the STO device, the heat sink being configured to reduce a temperature of the STO device when current flows to the STO device. In another embodiment, a method includes forming a heat sink behind a STO device in an element height direction perpendicular to a media facing surface, and/or on both sides of the STO device in a cross-track direction at the media facing surface.
Abstract:
In one embodiment, a magnetic data storage system includes a magnetic disk medium, a microwave-assisted magnetic recording (MAMR) head including a main pole adapted for recording data to the magnetic disk medium having a first recording width, a spin torque oscillator (STO) adapted to apply a high-frequency magnetic field to the magnetic disk medium during a recording operation, wherein the STO is operable or inoperable when in an on or off state, respectively, wherein the main pole has a second recording width when the STO is in the on state, and the second recording width is different from the first recording width, a drive mechanism for passing the magnetic disk medium over the MAMR head, a read head including a magnetoresistance sensor, and a controller adapted for adjusting a shift quantity of the magnetic head depending on whether the STO is in the on or off state.