Abstract:
The present disclosure provides systems and methods for on-device machine learning. In particular, the present disclosure is directed to an on-device machine learning platform and associated techniques that enable on-device prediction, training, example collection, and/or other machine learning tasks or functionality. The on-device machine learning platform can include a context provider that securely injects context features into collected training examples and/or client-provided input data used to generate predictions/inferences. Thus, the on-device machine learning platform can enable centralized training example collection, model training, and usage of machine-learned models as a service to applications or other clients.
Abstract:
Systems and methods described herein relate to automation of video creation for an associated audio file or musical composition. In particular, a video can be generated for the audio file that includes images and videos that are compelling and contextually relevant to, and technically compatible with, the audio file.
Abstract:
A system and method for associating videos with geographic locations is disclosed. The system comprises a communication module, a location module, a tagging module and a database association module. The communication module receives a video uploaded by a content provider and a set of video data describing the video. The location module determines that the video describes a geographic location included in a geographic map based at least in part on the video data. The tagging module determines one or more travelling tags for the video based at least in part on the video data. The database association module associates the video and the one or more travelling tags with the geographic location so that the video with the one or more travelling tags is included in the geographic map.
Abstract:
A system and method provide a soundtrack recommendation service for recommending one or more soundtrack for a video (i.e., a probe video). A feature extractor of the recommendation service extracts a set of content features of the probe video and generates a set of semantic features represented by a signature vector of the probe video. A video search module of the recommendation service is configured to search for a number of video candidates, each of which is semantically similar to the probe video and has an associated soundtrack. A video outlier identification module of the recommendation service identifies video candidates having an atypical use of their soundtracks and ranks the video candidates based on the typicality of their soundtrack usage. A soundtrack recommendation module selects the soundtracks of the top ranked video candidates as the soundtrack recommendations to the probe video.
Abstract:
The present disclosure provides systems and methods for on-device machine learning. In particular, the present disclosure is directed to an on-device machine learning platform and associated techniques that enable on-device prediction, training, example collection, and/or other machine learning tasks or functionality. The on-device machine learning platform can include a context provider that securely injects context features into collected training examples and/or client-provided input data used to generate predictions/inferences. Thus, the on-device machine learning platform can enable centralized training example collection, model training, and usage of machine-learned models as a service to applications or other clients.
Abstract:
A system and method for identifying and predicting subjective attributes for entities (e.g., media clips, movies, television shows, images, newspaper articles, blog entries, persons, organizations, commercial businesses, etc.) are disclosed. In one aspect, subjective attributes for a first media item are identified based on a reaction to the first media item, and relevancy scores for the subjective attributes with respect to the first media item are determined. A classifier is trained using (i) a training input comprising a set of features for the first media item, and a target output for the training input, the target output comprising the respective relevancy scores for the subjective attributes with respect to the first media item.
Abstract:
The present disclosure provides systems and methods for on-device machine learning. In particular, the present disclosure is directed to an on-device machine learning platform and associated techniques that enable on-device prediction, training, example collection, and/or other machine learning tasks or functionality. The on-device machine learning platform can include a context provider that securely injects context features into collected training examples and/or client-provided input data used to generate predictions/inferences. Thus, the on-device machine learning platform can enable centralized training example collection, model training, and usage of machine-learned models as a service to applications or other clients.
Abstract:
Disclosed herein are methods and apparatuses for compressing a video signal. In one embodiment, the method includes storing a function derived from a set of human ratings in a memory, identifying within at least a portion of the video signal at least one content-based feature, inputting the at least one identified content-based feature into the stored function, determining a compression ratio based on the function using a processor and generating a compressed video signal at the determined compression ratio.
Abstract:
A system and method provide a soundtrack recommendation service for recommending one or more soundtrack for a video (i.e., a probe video). A feature extractor of the recommendation service extracts a set of content features of the probe video and generates a set of semantic features represented by a signature vector of the probe video. A video search module of the recommendation service is configured to search for a number of video candidates, each of which is semantically similar to the probe video and has an associated soundtrack. A video outlier identification module of the recommendation service identifies video candidates having an atypical use of their soundtracks and ranks the video candidates based on the typicality of their soundtrack usage. A soundtrack recommendation module selects the soundtracks of the top ranked video candidates as the soundtrack recommendations to the probe video.
Abstract:
A system and method for associating videos with geographic locations is disclosed. The system comprises a communication module, a location module, a tagging module and a database association module. The communication module receives a video uploaded by a content provider and a set of video data describing the video. The location module determines that the video describes a geographic location included in a geographic map based at least in part on the video data. The tagging module determines one or more travelling tags for the video based at least in part on the video data. The database association module associates the video and the one or more travelling tags with the geographic location so that the video with the one or more travelling tags is included in the geographic map.