Abstract:
Methods and systems for segmentation in echocardiography are provided. One method includes obtaining echocardiographic images and defining a search space within the echocardiographic images using a pair of one-dimensional (1D) profiles. The method also includes using an energy based function constrained by non-local temporal priors within the defined search space to automatically segment a contour of a cardiac structure with the 1D profiles.
Abstract:
A method for determining optimized deep learning architecture includes receiving a plurality of training images and a plurality of real time images corresponding to a subject. The method further includes receiving, by a medical practitioner, a plurality of learning parameters comprising a plurality of filter classes and a plurality of architecture parameters. The method also includes determining a deep learning model based on the plurality of learning parameters and the plurality of training images, wherein the deep learning model comprises a plurality of reusable filters. The method further includes determining a health condition of the subject based on the plurality of real time images and the deep learning model. The method also includes providing the health condition of the subject to the medical practitioner.
Abstract:
An imaging system and method are disclosed. An MR image and measured B0 field map of a target volume in a subject are reconstructed, where the MR image includes one or more bright and/or dark regions. One or more distinctive constituent materials corresponding to the bright regions are identified. Each dark region is iteratively labeled as one or more ambiguous constituent materials. Susceptibility values corresponding to each distinctive and iteratively labeled ambiguous constituent material is assigned. A simulated B0 field map is iteratively generated based on the assigned susceptibility values. A similarity metric is determined between the measured and simulated B0 field maps. Constituent materials are identified in the dark regions based on the similarity metric to ascertain corresponding susceptibility values. The MRI data is corrected based on the assigned and ascertained susceptibility values. A diagnostic assessment of the target volume is determined based on the corrected MRI data.
Abstract:
A method for image segmentation includes receiving an input image. The method further includes obtaining a deep learning model having a triad of predictors. Furthermore, the method includes processing the input image by a shape model in the triad of predictors to generate a segmented shape image. Moreover, the method includes presenting the segmented shape image via a display unit.
Abstract:
A method implemented using at least one processor includes receiving time-varying image dataset generated by a medical imaging modality. The image dataset corresponds to a bed position and is affected by quasi-periodic motion data. The method also includes applying a signal decomposition technique to the time-varying image dataset to generate a plurality of dataset components and a plurality of motion signals. The method also includes determining reference data based on the time-varying image dataset, wherein the reference data is representative of a direction of the quasi-periodic motion. The method further includes deriving polarity of each of the plurality of motion signals based on the reference data to generate a plurality of sign corrected motion signals. The method also includes determining a gating signal corresponding to the bed position based on at least one of the plurality of sign corrected motion signals.
Abstract:
A method implemented using at least one processor includes receiving time-varying image dataset generated by a medical imaging modality. The image dataset corresponds to a bed position and is affected by quasi-periodic motion data. The method also includes applying a signal decomposition technique to the time-varying image dataset to generate a plurality of dataset components and a plurality of motion signals. The method also includes determining reference data based on the time-varying image dataset, wherein the reference data is representative of a direction of the quasi-periodic motion. The method further includes deriving polarity of each of the plurality of motion signals based on the reference data to generate a plurality of sign corrected motion signals. The method also includes determining a gating signal corresponding to the bed position based on at least one of the plurality of sign corrected motion signals.
Abstract:
An imaging system and method are disclosed. An MR image and measured B0 field map of a target volume in a subject are reconstructed, where the MR image includes one or more bright and/or dark regions. One or more distinctive constituent materials corresponding to the bright regions are identified. Each dark region is iteratively labeled as one or more ambiguous constituent materials. Susceptibility values corresponding to each distinctive and iteratively labeled ambiguous constituent material is assigned. A simulated B0 field map is iteratively generated based on the assigned susceptibility values. A similarity metric is determined between the measured and simulated B0 field maps. Constituent materials are identified in the dark regions based on the similarity metric to ascertain corresponding susceptibility values. The MRI data is corrected based on the assigned and ascertained susceptibility values. A diagnostic assessment of the target volume is determined based on the corrected MRI data.
Abstract:
A method for generating a positron emission tomography (PET) attenuation correction map. The method includes obtaining a magnetic resonance (MR) image dataset of a subject of interest, obtaining a positron emission tomography (PET) emission dataset of the subject of interest, segmenting the MR image dataset to identify at least one object of interest, determining a volume of the object of interest, and generating a PET attenuation correction map using the determined volume. A medical imaging system and a non-transitory computer readable medium are also described herein.
Abstract:
A method for generating a positron emission tomography (PET) attenuation correction map. The method includes obtaining a magnetic resonance (MR) image dataset of a subject of interest, obtaining a positron emission tomography (PET) emission dataset of the subject of interest, segmenting the MR image dataset to identify at least one object of interest, determining a volume of the object of interest, and generating a PET attenuation correction map using the determined volume. A medical imaging system and a non-transitory computer readable medium are also described herein
Abstract:
A method for image segmentation includes receiving an input image. The method further includes obtaining a deep learning model having a triad of predictors. Furthermore, the method includes processing the input image by a shape model in the triad of predictors to generate a segmented shape image. Moreover, the method includes presenting the segmented shape image via a display unit.