摘要:
Systems and methods are provided for synchronizing multiple channels in an access network, where the multiple channels are neighboring channels such that a guard band between them or use of a diplexer to prevent inter-channel interference is not required. Synchronization is achieved by defining channel MAP (media access plan) cycle structures such that all channels work in the same direction (upstream US or downstream DS) at any given time. Moreover, the network controller of channel may send out a beacon to allow new nodes to join. A long MAP cycle (402) may be followed by three consecutive regular MAP cycles (404, 406), and (408). These MAP cycles are repeated between beacon transmissions. Synchronization allows multiple channels to be configured contiguous (without a guard band between neighbouring channels) and without utilizing diplexers. A plurality of customer premises equipment may operate on each of the communications channels.
摘要:
Systems and methods are provided for synchronizing multiple channels in an access network, where the multiple channels are neighboring channels such that a guard band between them or use of a diplexer to prevent inter-channel interference is not required. Synchronization is achieved by defining channel MAP (media access plan) cycle structures such that all channels work in the same direction (upstream US or downstream DS) at any given time. Moreover, the network controller of channel may send out a beacon to allow new nodes to join. A long MAP cycle (402) may be followed by three consecutive regular MAP cycles (404, 406), and (408). These MAP cycles are repeated between beacon transmissions. Synchronization allows multiple channels to be configured contiguous (without a guard band between neighboring channels) and without utilizing diplexers. A plurality of customer premises equipment may operate on each of the communications channels.
摘要:
Methods and systems for unifying an EPON network and a coax-based access network may include, in a network with an Ethernet passive optical network (EPON) optical line terminal (OLT), coaxial network units (CNUs), and an optical coax bridge (OCB) with a plurality of virtual optical network units (vONUs) each comprising a plurality of logical link identifiers (LLIDs) and having its own MAC address, each vONU corresponding to one CNU: forming, in the OCB, each of the plurality of vONUs when a respective CNU is admitted to a coax network coupled to the OCB; communicating data transmissions from an optical fiber network to the coax network, and data transmissions from the coax network to the optical fiber network, via said OCB; and transmitting and receiving data packets between the OLT and the at least one CNU. The OCB may emulate an optical network unit (ONU) relative to the OLT.
摘要:
A communication system and method including the steps of receiving a first request to initiate a guaranteed quality of service flow in a network, broadcasting a second request from a Network Coordinator to a plurality of nodes connected to the network and receiving a first response to the second request from at least one ingress node. The method further includes receiving a second response to the second request from at least one egress node indicating whether the at least one egress node has available resources to receive the guaranteed quality of service flow and allocating resources for the guaranteed quality of service flow if the at least one ingress node has available resources to transmit, and the at least one egress node has available resources to receive, the guaranteed quality of service flow.
摘要:
Systems and methods are provided for synchronizing multiple channels in an access network, where the multiple channels are neighboring channels such that a guard band between them or use of a diplexer to prevent inter-channel interference is not required. Synchronization is achieved by defining channel MAP (media access plan) cycle structures such that all channels work in the same direction (upstream US or downstream DS) at any given time. Moreover, the network controller of channel may send out a beacon to allow new nodes to join. A long MAP cycle (402) may be followed by three consecutive regular MAP cycles (404, 406), and (408). These MAP cycles are repeated between beacon transmissions. Synchronization allows multiple channels to be configured contiguous (without a guard band between neighbouring channels) and without utilizing diplexers. A plurality of customer premises equipment may operate on each of the communications channels.
摘要:
Systems and methods for using a dual role device (DRD), the DRD having a first mode in which the DRD functions as a customer premise equipment (CPE) node in a first network and a second mode in which the DRD functions as a network controller (NC) node in a second network.
摘要:
Systems and methods are provided for synchronizing multiple channels in an access network, where the multiple channels are neighboring channels such that a guard band between them or use of a diplexer to prevent inter-channel interference is not required. Synchronization is achieved by defining channel MAP (media access plan) cycle structures such that all channels work in the same direction (upstream US or downstream DS) at any given time. Moreover, the network controller of channel may send out a beacon to allow new nodes to join. A long MAP cycle (402) may be followed by three consecutive regular MAP cycles (404, 406), and (408). These MAP cycles are repeated between beacon transmissions. Synchronization allows multiple channels to be configured contiguous (without a guard band between neighbouring channels) and without utilizing diplexers. A plurality of customer premises equipment may operate on each of the communications channels.
摘要:
Methods and systems for unifying an EPON network and a coax-based access network may include, in a network with an Ethernet passive optical network (EPON) optical line terminal (OLT), coaxial network units (CNUs), and an optical coax bridge (OCB) with a plurality of virtual optical network units (vONUs) each comprising a plurality of logical link identifiers (LLIDs) and having its own MAC address, each vONU corresponding to one CNU: forming, in the OCB, each of the plurality of vONUs when a respective CNU is admitted to a coax network coupled to the OCB; communicating data transmissions from an optical fiber network to the coax network, and data transmissions from the coax network to the optical fiber network, via said OCB; and transmitting and receiving data packets between the OLT and the at least one CNU. The OCB may emulate an optical network unit (ONU) relative to the OLT.
摘要:
Systems and methods are provided for synchronizing multiple channels in an access network, where the multiple channels are neighboring channels such that a guard band between them or use of a diplexer to prevent inter-channel interference is not required. Synchronization is achieved by defining channel MAP (media access plan) cycle structures such that all channels work in the same direction (upstream US or downstream DS) at any given time. Moreover, the network controller of channel may send out a beacon to allow new nodes to join. A long MAP cycle (402) may be followed by three consecutive regular MAP cycles (404, 406), and (408). These MAP cycles are repeated between beacon transmissions. Synchronization allows multiple channels to be configured contiguous (without a guard band between neighbouring channels) and without utilizing diplexers. A plurality of customer premises equipment may operate on each of the communications channels.
摘要:
Methods and systems for unifying an EPON network and a coax-based access network may include, in a network with an Ethernet passive optical network (EPON) optical line terminal (OLT), coaxial network units (CNUs), and an optical coax bridge (OCB) with a plurality of virtual optical network units (vONUs) each comprising a plurality of logical link identifiers (LLIDs) and having its own MAC address, each vONU corresponding to one CNU: forming, in the OCB, each of the plurality of vONUs when a respective CNU is admitted to a coax network coupled to the OCB; communicating data transmissions from an optical fiber network to the coax network, and data transmissions from the coax network to the optical fiber network, via said OCB; and transmitting and receiving data packets between the OLT and the at least one CNU. The OCB may emulate an optical network unit (ONU) relative to the OLT.