Abstract:
An ultrasonic, flow measuring device, comprising a measuring tube having a straight measuring tube axis, a transmitter for sending an acoustic signal on a first signal path, a receiver for receiving the acoustic signal on the first signal path and a number of reflection surfaces, on which the acoustic signal is reflected at least once on the first signal path, wherein minimum separations of at least three subsections from the measuring tube axis lie in the range 0.4-0.6 r, wherein r is the inner radius of the measuring tube.
Abstract:
A method for ascertaining a compensated flow and/or a compensated flow velocity, wherein the compensation of a flow related measurement error occurs in the context of a flow measurement with a two path measuring of an ultrasonic, flow measuring device, comprising: an arrangement of at least two ultrasonic transducers pairs on a tube, or pipe, wherein the ultrasonic transducers are in a 180°, two path, one traverse, or a 90°, two path, two traverse arrangement, by means of an evaluation unit of a flow measuring device and/or a computer, characterized by steps as follows: a) feeding information relative to the type of a flow influencing, tube, or pipe, element into the evaluation unit and/or into the computer; b) feeding information relative to distance (xa-xd) of the arrangement of the ultrasonic transducer pairs from the flow influencing, tube, or pipe, element into the evaluation unit and/or into the computer; c) compensating a measurement error by means of a correction factor kD as a function of information from steps a) and b); and d) ascertaining a flow corrected by the correction factor kD and/or a flow velocity corrected by the correction factor kD, as well as an ultrasonic, flow measuring device and a computer program product.
Abstract:
An ultrasonic flow meter comprising: a measurement pipe, which has a measurement pipe wall, at least in some parts a basic shape having a rotationally symmetric or polygonal cross-section, and a straight measurement pipe axis; a transmitter for transmitting an acoustic signal on a first signal path; and a receiver for receiving the acoustic signal on the first signal path; The measurement pipe has a plurality of reflection surfaces, by which the acoustic signal on the first signal path is reflected multiple times, and wherein the reflection surfaces are integrally formed from the measurement pipe wall, the reflection surfaces for reflecting the acoustic signal being designed in such a way that one or more of the reflection surfaces at least partially protrude into the basic shape of the measurement pipe and one or more of the reflection surfaces project outward at least from the basic shape of the measurement pipe.
Abstract:
A method for ascertaining a compensated flow and/or a compensated flow velocity, wherein the compensation of a flow related measurement error occurs in the context of a flow measurement with a two path measuring of an ultrasonic, flow measuring device, comprising: an arrangement of at least two ultrasonic transducers pairs on a tube, or pipe, wherein the ultrasonic transducers are in a 180°, two path, one traverse, or a 90°, two path, two traverse arrangement, by means of an evaluation unit of a flow measuring device and/or a computer, characterized by steps as follows: a) feeding information relative to the type of a flow influencing, tube, or pipe, element into the evaluation unit and/or into the computer; b) feeding information relative to distance (xa-xd) of the arrangement of the ultrasonic transducer pairs from the flow influencing, tube, or pipe, element into the evaluation unit and/or into the computer; c) compensating a measurement error by means of a correction factor kD as a function of information from steps a) and b); and d) ascertaining a flow corrected by the correction factor kD and/or a flow velocity corrected by the correction factor kD, as well as an ultrasonic, flow measuring device and a computer program product.
Abstract:
A measuring tube, especially a measuring tube for an ultrasonic, flow measuring device, which measuring tube has a measuring tube wall and at least in certain regions a basic form with rotational symmetry or polygonal cross section and a straight measuring tube axis. The measuring tube includes at least one functional area for positioning a reflector, on which an acoustic signal is reflected on a signal path, and the functional area is formed integrally from the measuring tube wall. The functional area defines in at least one sectional view a circular segment, which serves as support for a reflector or the functional areas has stops, whose distal ends define in at least one sectional view a circular segment, which serves as support for a reflector, as well as an ultrasonic, flow measuring device and a method for manufacture of a measuring tube.
Abstract:
An ultrasonic flow meter comprising: a measurement pipe, which has a measurement pipe wall, at least in some parts a basic shape having a rotationally symmetric or polygonal cross-section, and a straight measurement pipe axis; a transmitter for transmitting an acoustic signal on a first signal path; and a receiver for receiving the acoustic signal on the first signal path. The measurement pipe has a plurality of reflection surfaces, by which the acoustic signal on the first signal path is reflected multiple times, and wherein the reflection surfaces are integrally formed from the measurement pipe wall, the reflection surfaces for reflecting the acoustic signal being designed in such a way that one or more of the reflection surfaces at least partially protrude into the basic shape of the measurement pipe and one or more of the reflection surfaces project outward at least from the basic shape of the measurement pipe.
Abstract:
An ultrasonic, flow measuring device, comprising a measuring tube, a transmitter for sending an acoustic signal, a receiver for receiving the acoustic signal and a number of reflection surfaces, on which the acoustic signal is reflected. A first signal path is composed of straight subsections, wherein a) minimum separations of at least three subsections from the measuring tube axis lie in the range 0.4-0.6 r, wherein r is the inner radius of the measuring tube; b) a first subsection, which defines a first axially parallel plane, has a directly corresponding second subsection, which defines a second axially parallel plane, which two planes extend through a reflection surface and the normal vectors enclose an angle of less than 10°, c) a third subsection, which defines a third axially parallel plane, has a directly corresponding fourth subsection, which defines a fourth axially parallel plane, wherein the two planes extend through a second reflection surface and the normal vectors enclose an angle of less than 10°; and d) the signal path describes in axial plan view a polygon, whose lateral points of intersection lie within, on or outside of the measuring tube.