Abstract:
Disclosed herein are an apparatus and method for reconstructing a three-dimensional (3D) face based on multiple cameras. The apparatus includes a multi-image analysis unit, a texture image separation unit, a reconstruction image automatic synchronization unit, a 3D appearance reconstruction unit, and a texture processing unit. The multi-image analysis unit determines the resolution information of images received from a plurality of cameras, and determines whether the images have been synchronized with each other. The texture image separation unit separates a texture processing image by comparing the resolutions of the received images. The reconstruction image automatic synchronization unit synchronizes images that are determined to be asynchronous images by the multi-image analysis unit. The 3D appearance reconstruction unit computes the 3D coordinate values of the synchronized images, and reconstructs a 3D appearance image. The texture processing unit reconstructs a 3D image by mapping the texture processing image to the 3D appearance image.
Abstract:
Disclosed herein are an apparatus and method for verifying and correcting degree of 3D-printed joints movement. A method for correcting a print position of a three-dimensional (3D) object is performed by a 3D object print position correction apparatus, and includes setting at least one adjacent mesh of a 3D object in which multiple shells are connected to each other through a joint structure, calculating movement degree information for the joint structure of the 3D object using the set adjacent mesh, and correcting a print position of the 3D object such that the print position matches the calculated movement degree information.
Abstract:
Disclosed herein is an apparatus and method for automatically creating a 3D personalized figure suitable for 3D printing by detecting a face area and features for respective regions from face data acquired by heterogeneous sensors and by optimizing global/local transformation. The 3D personalized figure creation apparatus acquires face data of a user corresponding to a reconstruction target; extracts feature points for respective regions from the face data, and reconstructs unique 3D models of the user's face, based on the extracted feature points; creates 3D figure models based on the unique 3D models and previously stored facial expression models and body/adornment models; and verifies whether each 3D figure model has a structure and a shape corresponding to actual 3D printing, corrects and edits the 3D figure model based on results of verification, and outputs a 3D figure model corresponding to 3D printing.