Dynamically enabling a transport control protocol proxy for satellite networks

    公开(公告)号:US11936564B2

    公开(公告)日:2024-03-19

    申请号:US17747359

    申请日:2022-05-18

    CPC classification number: H04L47/193 H04B7/18502 H04L69/16

    Abstract: Techniques for a TCP proxy to communicate over a LEO satellite network on behalf of a client device by selecting a TCP congestion-control algorithm that is optimal for the LEO satellite network based on the time of day and/or location of the TCP proxy. Based on the locations of satellites during the day as they traverse predefined and patterned orbital paths, different TCP congestion-control algorithms may be more optimized to communicate data through the LEO satellite network. However, client devices generally use a single TCP congestion-control algorithm to communicate over WAN networks. Accordingly, a TCP proxy may be inserted on, for example, a router to communicate with the client device using a TCP congestion-control algorithm that the client device is configured to use, but then communicate over the LEO satellite network using a different TCP congestion-control algorithm that is optimal based on the time of day and/or other factors.

    Dynamically Enabling a Transport Control Protocol Proxy for Satellite Networks

    公开(公告)号:US20230379258A1

    公开(公告)日:2023-11-23

    申请号:US17747359

    申请日:2022-05-18

    CPC classification number: H04L47/193 H04B7/18502 H04L69/16

    Abstract: Techniques for a TCP proxy to communicate over a LEO satellite network on behalf of a client device by selecting a TCP congestion-control algorithm that is optimal for the LEO satellite network based on the time of day and/or location of the TCP proxy. Based on the locations of satellites during the day as they traverse predefined and patterned orbital paths, different TCP congestion-control algorithms may be more optimized to communicate data through the LEO satellite network. However, client devices generally use a single TCP congestion-control algorithm to communicate over WAN networks. Accordingly, a TCP proxy may be inserted on, for example, a router to communicate with the client device using a TCP congestion-control algorithm that the client device is configured to use, but then communicate over the LEO satellite network using a different TCP congestion-control algorithm that is optimal based on the time of day and/or other factors.

    DYNAMICALLY ENABLING A TRANSPORT CONTROL PROTOCOL PROXY FOR SATELLITE NETWORKS

    公开(公告)号:US20240244003A1

    公开(公告)日:2024-07-18

    申请号:US18586355

    申请日:2024-02-23

    CPC classification number: H04L47/193 H04B7/18502 H04L69/16

    Abstract: Techniques for a TCP proxy to communicate over a LEO satellite network on behalf of a client device by selecting a TCP congestion-control algorithm that is optimal for the LEO satellite network based on the time of day and/or location of the TCP proxy. Based on the locations of satellites during the day as they traverse predefined and patterned orbital paths, different TCP congestion-control algorithms may be more optimized to communicate data through the LEO satellite network. However, client devices generally use a single TCP congestion-control algorithm to communicate over WAN networks. Accordingly, a TCP proxy may be inserted on, for example, a router to communicate with the client device using a TCP congestion-control algorithm that the client device is configured to use, but then communicate over the LEO satellite network using a different TCP congestion-control algorithm that is optimal based on the time of day and/or other factors.

Patent Agency Ranking