Abstract:
A method of providing anti-replay protection, authentication, and encryption with minimal data overhead is provided. A sender uses an arbitrary-length pseudorandom permutation to encrypt messages that include plaintext and successively increasing sequence numbers, to produce ciphertext messages. The sender transmits the ciphertext messages. A receiver receives the ciphertext messages and, for each received ciphertext message, performs the following operations. The receiver decrypts the given ciphertext message to recover plaintext and a candidate sequence number from the message. The receiver determines if the candidate sequence number is in any one of multiple acceptable sequence number windows having respective sequence number ranges that are based on at least one of a highest sequence number previously accepted and a last sequence number that was previously rejected, as established based on processing of previously received ciphertext messages.
Abstract:
A method of providing anti-replay protection, authentication, and encryption with minimal data overhead is provided. A sender uses an arbitrary-length pseudorandom permutation to encrypt messages that include plaintext and successively increasing sequence numbers, to produce ciphertext messages. The sender transmits the ciphertext messages. A receiver receives the ciphertext messages and, for each received ciphertext message, performs the following operations. The receiver decrypts the given ciphertext message to recover plaintext and a candidate sequence number from the message. The receiver determines if the candidate sequence number is in any one of multiple acceptable sequence number windows having respective sequence number ranges that are based on at least one of a highest sequence number previously accepted and a last sequence number that was previously rejected, as established based on processing of previously received ciphertext messages.
Abstract:
A method of providing anti-replay protection, authentication, and encryption with minimal data overhead is provided. A sender uses an arbitrary-length pseudorandom permutation to encrypt messages that include plaintext and successively increasing sequence numbers, to produce ciphertext messages. The sender transmits the ciphertext messages. A receiver receives the ciphertext messages and, for each received ciphertext message, performs the following operations. The receiver decrypts the given ciphertext message to recover plaintext and a candidate sequence number from the message. The receiver determines if the candidate sequence number is in any one of multiple non-contiguous acceptable sequence number windows having respective sequence number ranges that are based on at least one of a highest sequence number previously accepted and a last sequence number that was previously rejected, as established based on processing of previously received ciphertext messages.
Abstract:
In one implementation, network taps are detected using impedance measurements from a network. A network device is configured to calculate a baseline impedance as a function of a sequence of impedance values. As impedance measurements subsequent to the sequence of impedance values are received, the network device is configured to calculate a difference between the impedance measurement and the baseline impedance. The network device generates a network tap warning message when the difference between the impedance measurement and the baseline impedance exceeds a threshold. The network device may be an endpoint computer, a data switch, or an external device remote from the network.
Abstract:
A method of providing anti-replay protection, authentication, and encryption with minimal data overhead is provided. A sender uses an arbitrary-length pseudorandom permutation to encrypt messages that include plaintext and successively increasing sequence numbers, to produce ciphertext messages. The sender transmits the ciphertext messages. A receiver receives the ciphertext messages and, for each received ciphertext message, performs the following operations. The receiver decrypts the given ciphertext message to recover plaintext and a candidate sequence number from the message. The receiver determines if the candidate sequence number is in any one of multiple non-contiguous acceptable sequence number windows having respective sequence number ranges that are based on at least one of a highest sequence number previously accepted and a last sequence number that was previously rejected, as established based on processing of previously received ciphertext messages.
Abstract:
In one implementation, network taps are detected using impedance measurements from a network. A network device is configured to calculate a baseline impedance as a function of a sequence of impedance values. As impedance measurements subsequent to the sequence of impedance values are received, the network device is configured to calculate a difference between the impedance measurement and the baseline impedance. The network device generates a network tap warning message when the difference between the impedance measurement and the baseline impedance exceeds a threshold. The network device may be an endpoint computer, a data switch, or an external device remote from the network.