Abstract:
In order for intermediary WAAS devices to process and accelerate ICA traffic, they must decrypt the ICA traffic in order to examine it. Disclosed is a mechanism by which the ICA traffic may be re-encrypted for transport over the WAN in a manner that does not require explicit configuration by the administrator of the WAAS devices. For example, VDI traffic may be intercepted and all data redundancy elimination messages may be encrypted and sent to a peer network device.
Abstract:
In one embodiment, a solution is provided wherein a volume hierarchy may be received at a network device in a storage area network. Once the network device is ready to apply the volume hierarchy, a message so indicating may be sent. Later, a command to apply the volume hierarchy may be received and the volume hierarchy may be applied so that the network device processes IOs using the volume hierarchy.
Abstract:
In one embodiment, a solution is provided wherein a volume hierarchy may be received at a network device in a storage area network. Once the network device is ready to apply the volume hierarchy, a message so indicating may be sent. Later, a command to apply the volume hierarchy may be received and the volume hierarchy may be applied so that the network device processes IOs using the volume hierarchy.
Abstract:
In order for intermediary WAAS devices to process and accelerate ICA traffic, they must decrypt the ICA traffic in order to examine it. Disclosed is a mechanism by which the ICA traffic may be re-encrypted for transport over the WAN in a manner that does not require explicit configuration by the administrator of the WAAS devices. For example, VDI traffic may be intercepted and all data redundancy elimination messages may be encrypted and sent to a peer network device.