Abstract:
A glass manufacturing apparatus includes a forming apparatus defining a travel path extending in a travel direction. The forming apparatus conveys a ribbon of glass-forming material along the travel path in the travel direction of the forming apparatus. The glass manufacturing apparatus includes a cooling tube extending substantially parallel to the travel path and extending across the travel direction. The cooling tube includes a plurality of orifices spaced apart along the cooling tube and facing the travel path. Methods of manufacturing glass can comprise flowing a coolant from an outlet of a conduit in a direction toward a target location of a flowing ribbon of molten material. Methods can also include changing a phase of the coolant while the coolant is flowing towards the target location. The change in phase can cool the target location.
Abstract:
Embodiments of glass forming apparatuses are disclosed herein. In one embodiment, a glass forming apparatus may include a forming body defining a draw plane extending from the forming body in a draw direction. An actively-cooled thermal sink may be positioned below the forming body in the draw direction and spaced apart from the draw plane. An infrared-transparent barrier may be positioned between the actively-cooled thermal sink and the draw plane. The infrared-transparent barrier may comprise an infrared-transparent wall positioned proximate the actively-cooled thermal sink or an infrared-transparent jacket positioned around the actively-cooled thermal sink.
Abstract:
An apparatus for making a glass sheet including a forming apparatus, a transition member, and a heat transfer device. The forming apparatus forms a glass ribbon from a supply of molten glass. The transition member encloses the glass ribbon adjacent the forming apparatus, and defines an interior space through which the glass ribbon passes. The heat transfer device is disposed within the interior space, and comprises a tube and a fin. The tube defines an exterior surface and an interior passage. The fin projects from the exterior surface. With this construction, the heat transfer device functions to extract heat radiated by the glass ribbon while minimizing the formation of flow vortices.
Abstract:
Methods and apparatuses for fabricating continuous glass ribbons are disclosed. The method includes forming the continuous glass ribbon by drawing the continuous glass ribbon from a draw housing in a drawing direction, heating at least one portion of a central region of the continuous glass ribbon at a heating location downstream of the draw housing, sensing a temperature of the continuous glass ribbon at a sensed temperature location downstream of the draw housing, and automatically controlling the heating of the at least one portion of the central region of the continuous glass ribbon based on the sensed temperature to mitigate distortion of the continuous glass ribbon.
Abstract:
An apparatus and method for manufacturing glass include a heat extractor configured to extract heat from molten glass. The heat extractor includes a first conduit and at least one second conduit which may include a plurality of second conduits circumferentially surrounding the first conduit. The first conduit and the at least one second conduit are configured to flow a fluid therethrough.
Abstract:
Glass forming apparatuses which decrease dimensional variations in glass ribbons are disclosed. In embodiments, a glass forming apparatus may include a forming body defining a draw plane that extends in a draw direction. An enclosure may extend in the draw direction below the forming body. The enclosure may include a compartment positioned below the forming body in the draw direction. The compartment may include a cooled wall positioned adjacent to the draw plane, a fluid conduit positioned within the compartment and adjacent to the cooled wall, an extraction port extending through the cooled wall and positioned in the draw direction from the fluid conduit, and an injection port extending through the cooled wall and positioned in the draw direction from the fluid conduit.
Abstract:
A glass manufacturing apparatus is described herein that comprises a forming device configured to produce a glass ribbon and a pull roll device which draws the glass ribbon downward from the forming device. The pull roll device has a first roll apparatus, a second roll apparatus, and a third roll apparatus. The pull roll device is configured to at least independently operate the first roll apparatus and the second roll apparatus such that at least one of a first upstream pair of draw rolls rotates with a substantially constant torque and at least one of a first downstream pair of draw rolls rotates with a substantially constant angular velocity. In further examples, methods of manufacturing a glass ribbon are provided.
Abstract:
A glass manufacturing apparatus includes a forming apparatus defining a travel path extending in a travel direction. The forming apparatus conveys a ribbon of glass-forming material along the travel path in the travel direction of the forming apparatus. The glass manufacturing apparatus includes a cooling tube extending substantially parallel to the travel path and extending across the travel direction. The cooling tube includes a plurality of orifices spaced apart along the cooling tube and facing the travel path. Methods of manufacturing glass can comprise flowing a coolant from an outlet of a conduit in a direction toward a target location of a flowing ribbon of molten material. Methods can also include changing a phase of the coolant while the coolant is flowing towards the target location. The change in phase can cool the target location.
Abstract:
An apparatus for making a glass sheet including a forming apparatus, a transition member, and a heat transfer device. The forming apparatus forms a glass ribbon from a supply of molten glass. The transition member encloses the glass ribbon adjacent the forming apparatus, and defines an interior space through which the glass ribbon passes. The heat transfer device is disposed within the interior space, and comprises a tube and a fin. The tube defines an exterior surface and an interior passage. The fin projects from the exterior surface. With this construction, the heat transfer device functions to extract heat radiated by the glass ribbon while minimizing the formation of flow vortices.
Abstract:
A glass forming apparatus and method include a cooling mechanism in a wall of the apparatus that enhances radiation heat transfer between the glass and the wall of the apparatus and is tunable in both the vertical and horizontal directions. The apparatus and method also include a heating mechanism that affects radiation heat transfer between the glass and the wall of the apparatus, is tunable in both the vertical and horizontal directions, and is independently operable from the cooling mechanism.