Abstract:
A rotor blade control system and methods therefor including a hub assembly pivotally attached to a rotor blade; a mast attached to the hub assembly; a swashplate assembly engaged with the mast and including a swashplate actuation mechanism pivotally coupled with the non-rotating ring at a plurality of coupling locations for moving the non-rotating ring and pivotally coupled with the base at a plurality of base locations, the swashplate actuation mechanism comprises a plurality of substantially triangular dual actuator assemblies that are independently and concurrently operable to move the respective coupling location so as to impart movement on the non-rotating ring. The swashplate actuation mechanism is configured to move the swashplate assembly about a longitudinal axis and a lateral axis in response to a cyclic input. The swashplate actuation mechanism is configured to move the swashplate assembly along the mast in response to a collective input.
Abstract:
A rotorcraft includes a fight control computer (FCC), a first rotor system, and a second rotor system. The first rotor system includes a first swashplate coupled to a first rotor and a first multiple actuators configured to move the first swashplate. The second rotor system includes a second swashplate coupled to a second rotor and a second multiple actuators configured to move the second swashplate. The rotorcraft also includes a first communications channel coupled between the FCC, a first actuator of the first multiple actuators, and a second actuator of the second multiple actuators. The rotorcraft also includes a second communications channel coupled between the CC and a third actuator of the first multiple actuators.
Abstract:
A rotorcraft autopilot system includes a series actuator connecting a cockpit control component to a swashplate of a rotorcraft, the series actuator to modify a control input from the cockpit control component to the swashplate through a downstream control component. The rotorcraft autopilot system also includes a differential friction system connected to the cockpit control component, the differential friction system to control the series actuator to automatically adjust a position of the cockpit control component during rotorcraft flight based, in part, on a flight mode of the rotorcraft.
Abstract:
A system and method of increasing the control authority of redundant stability and control augmentation system (SCAS) actuators by utilizing feedback between systems such that one system may compensate for the position of a failed actuator of the other system. Each system uses an appropriate combination of reliable and unreliable inputs such that unreliable inputs cannot inappropriately utilize the increased authority. Each system may reconfigure itself when the other system actuator fails at certain positions so that the pilot or other upstream input maintains sufficient control authority of the aircraft.
Abstract:
One example of an actuation system includes a pneumatic muscle connected to a component to be actuated. The system also includes an actuation member connected in series to the pneumatic muscle and valve connected to the pneumatic muscle to control a pressure in the pneumatic muscle. The system also includes a positioning mechanism connected to the component to control a movement of the component and a controller connected to the pneumatic muscle, the valve, and the positioning mechanism, the controller to control actuation of the component by controlling the pressure in the pneumatic muscle.
Abstract:
A system and method of increasing the control authority of redundant stability and control augmentation system (SCAS) actuators by utilizing feedback between systems such that one system may compensate for the position of a failed actuator of the other system. Each system uses an appropriate combination of reliable and unreliable inputs such that unreliable inputs cannot inappropriately utilize the increased authority. Each system may reconfigure itself when the other system actuator fails at certain positions so that the pilot or other upstream input maintains sufficient control authority of the aircraft.
Abstract:
One example of an actuation system includes a pneumatic muscle connected to a component to be actuated. The system also includes an actuation member connected in series to the pneumatic muscle and valve connected to the pneumatic muscle to control a pressure in the pneumatic muscle. The system also includes a positioning mechanism connected to the component to control a movement of the component and a controller connected to the pneumatic muscle, the valve, and the positioning mechanism, the controller to control actuation of the component by controlling the pressure in the pneumatic muscle.
Abstract:
In some embodiments, a method of provided boosted actuation to an aircraft flight control device includes receiving an input from a pilot input device via a mechanical input member, providing mechanical energy to a driving member of a controlled-slippage actuator, and varying the strength of a magnetic field applied to a magnetorheological (MR) fluid disposed between the driving member and a driven member of the controlled-slippage actuator based on the relative positions of the mechanical input member and a mechanical output member that is in mechanical communication with the driven member and the aircraft flight control device.
Abstract:
According to one embodiment, a stability augmentation system includes a master linkage, a stability augmentation motor, and three linkages. A first linkage is coupled to the master linkage and operable to receive movements representative of pilot commands from a pilot command system. A second linkage is coupled between the stability augmentation motor and the master linkage and operable to receive movements representative of augmentation commands from the stability augmentation motor. A third linkage is coupled to the master linkage and operable to transmit movements representative of blade position commands to a blade control system in response to the movements representative of pilot commands and the movements representative of augmentation commands.
Abstract:
A method of determining a center of gravity of an aircraft in flight by comparing actual control surface actuator displacements to expected control surface actuator displacements. And a method of fuel/load management based on an offset of the center of gravity from a preferred center of gravity and a handling qualities factor.