Abstract:
Service aware network devices coordinate function chains of virtual functions. The network devices are aware of which virtual functions exist and how to interconnect them in the most efficient manner and define and process service graphs that can be maintained, monitored and redirected. The network devices themselves implement and manage the service graphs, as opposed to the virtual servers that host the virtual functions.
Abstract:
Systems and methods for handling virtual machine packets are provided. In some aspects, a method includes receiving, by a network interface controller, an indicator of a packet from a virtual machine. The indicator bypasses a virtual switch coupled to the virtual machine. The method also includes determining, in response to receiving the indicator, whether the packet is designated for accelerated processing. The method also includes providing the indicator to the virtual switch for processing if the packet is determined not to be designated for accelerated processing. The method also includes processing, by the network interface controller, the packet for transmission if the packet is determined to be designated for accelerated processing.
Abstract:
A universal network interface controller (UNIC) is provided for interfacing a host computer to a switch fabric, a packet network, or both. The UNIC includes encapsulation logic configured to encapsulate a CBP communication for transmission as switch fabric data on the switch fabric. Finally, the UNIC includes transmit logic configured to transmit the encapsulated CBP communication to the remote CBP device using the switch fabric.
Abstract:
A universal network interface controller (UNIC) is provided for interfacing a host computer to a switch fabric, a packet network, or both. The UNIC includes encapsulation logic configured to encapsulate a CBP communication for transmission as switch fabric data on the switch fabric. Finally, the UNIC includes transmit logic configured to transmit the encapsulated CBP communication to the remote CBP device using the switch fabric.
Abstract:
A network-displaced direct storage architecture transports storage commands over a network interface. In one implementation, the architecture maps, at hosts, block storage commands to remote direct memory access operations (e.g., over converged Ethernet). The mapped operations are communicated across the network to a network storage appliance. At the network storage appliance, network termination receives the mapped commands, extracts the operation and data, and passes the operation and data to a storage device that implements the operation on a memory.
Abstract:
A universal network interface controller (UNIC) is provided for interfacing a host computer to a switch fabric, a packet network, or both. The UNIC includes encapsulation logic configured to encapsulate a CBP communication for transmission as switch fabric data on the switch fabric. Finally, the UNIC includes transmit logic configured to transmit the encapsulated CBP communication to the remote CBP device using the switch fabric.
Abstract:
System, method and apparatus for network congestion management and network resource isolation. A high level network usage and device architecture is provided that can satisfy buffering and network bandwidth resource management for data center networks. The congestion management can be defined to bring the reaction point closer to the network ports. In one embodiment, the reaction point is resident in a network interface card (NIC).
Abstract:
A system and method for credit-based link level flow control. In one embodiment, a byte-based flow control mechanism is based on a sender effectively maintaining a buffer state at the receiver. In maintaining a buffer state at the receiver, the sender is provided with information regarding byte expansion at the receiver. This byte-expansion information can be used by the sender to identify the amount of additional storage needed by the receiver when storing a packet transmitted by the sender in the receiver's packet buffer.
Abstract:
A method of transferring data in a network is provided. Data is received at a sub-switch of a first bundled switch having a plurality of sub-switches, the sub-switch being configured to only couple to connections external to the first bundled switch. The method also includes transferring the data from the first bundled switch using a multi-lane cable coupled to a second bundled switch, a first end of the multi-lane cable coupled to a sub-switch in the first bundled switch and a second end of the multi-lane cable coupled to at least two sub-switches in the second bundled switch.
Abstract:
A network function virtualization security and trust system includes a network device that operates as a virtualized network device with virtualized services provided on the network device by network nodes included in the system. Security and trust within the system can include hardware authentication of the network nodes and the network device to obtain a level of security of the hardware provisioning the operation of the virtualized services. Security and trust can also include authentication of the services being used on the virtualized network device. Services authentication can be based on monitoring and analysis of the cooperative operation of the services in the virtualized network device. The virtualized services can be dynamically changed, added or stopped. Hardware authentication and dynamic services authentication in accordance with changes in the virtualized services can dynamically maintain a level of security across the devices and the virtualized services.