Abstract:
A method for changing a value displayed on a screen is provided. In response to receiving a user input indicating motion in a particular direction, changing the value independent of where the position of a cursor is on the screen. The value being changed may comprise of a series of segments, and each segment value can be changed individually. In addition, a different user input device that does not indicate motion in a particular direction may be used to change segment values and to select other segment values. Methods for automatically formatting a segmented values and calculating a base time rate based on two different frame rates are also provided.
Abstract:
Some embodiments provide a computer readable medium storing a media editing application for creating multimedia presentations. The application includes a graphical user interface (GUI). The GUI includes a composite display area for displaying graphical representations of a set of media clips that are part of a composite presentation. Each graphical representation of a particular media clip is assigned to a particular row in the composite display area, where each row corresponds to a particular track in the composite presentation. Some embodiments of the GUI include a compression tool for assigning the graphical representations to new rows so as to reduce blank space in the composite display area, where the assignment of the graphical representations to new rows eliminates the correspondence between the rows and the tracks. Some embodiments include a collapsing tool for reducing a size of graphical representations in the composite display area.
Abstract:
Techniques are described for displaying projects of images as “collages”. Collages differ from conventional thumbnail displays of projects in that collages display an entire project as if the project were a single image. Consequently, collages better convey the characteristics of projects as a whole, while de-emphasizing the distinctiveness of individual images within the projects. When displayed as collages, side-by-side comparisons may be readily performed between projects as a whole. For example, a single display may include collages for multiple projects, thereby allowing viewers to quickly tell how the projects differ in a variety of ways, including but not limited to size of shoot or density of shoot, dominant color, mood, time of day, bracketed shots or bursts, location and subject matter. The content of the collage for a project is based on the individual images that belong to the project. However, details of the individual images on which the project image is based may not be readily discernible from the collage. In addition, not all individual images that belong to a project may be used in a collage. Techniques for selecting which individual images of a project to include in the project are also described.
Abstract:
Techniques are described for displaying projects of images as “collages”. Collages differ from conventional thumbnail displays of projects in that collages display an entire project as if the project were a single image. Consequently, collages better convey the characteristics of projects as a whole, while de-emphasizing the distinctiveness of individual images within the projects. When displayed as collages, side-by-side comparisons may be readily performed between projects as a whole. For example, a single display may include collages for multiple projects, thereby allowing viewers to quickly tell how the projects differ in a variety of ways, including but not limited to size of shoot or density of shoot, dominant color, mood, time of day, bracketed shots or bursts, location and subject matter. The content of the collage for a project is based on the individual images that belong to the project. However, details of the individual images on which the project image is based may not be readily discernible from the collage. In addition, not all individual images that belong to a project may be used in a collage. Techniques for selecting which individual images of a project to include in the project are also described.
Abstract:
A method for changing a value displayed on a screen is provided. In response to receiving a user input indicating motion in a particular direction, changing the value independent of where the position of a cursor is on the screen. The value being changed may comprise of a series of segments, and each segment value can be changed individually. In addition, a different user input device that does not indicate motion in a particular direction may be used to change segment values and to select other segment values. Methods for automatically formatting a segmented values and calculating a base time rate based on two different frame rates are also provided.
Abstract:
A method for changing a value displayed on a screen is provided. In response to receiving a user input indicating motion in a particular direction, changing the value independent of where the position of a cursor is on the screen. The value being changed may comprise of a series of segments, and each segment value can be changed individually. In addition, a different user input device that does not indicate motion in a particular direction may be used to change segment values and to select other segment values. Methods for automatically formatting a segmented values and calculating a base time rate based on two different frame rates are also provided.