Abstract:
Image-based localization technique embodiments are presented which provide a real-time approach for image-based video camera localization within large scenes that have been reconstructed offline using structure from motion or similar techniques. From monocular video, a precise 3D position and 3D orientation of the camera can be estimated on a frame by frame basis using only visual features.
Abstract:
Embodiments are described for a method to generate an image that includes image structure detail captured from a first image and color from a second image. The first image of a defined subject can be obtained from a computer memory. The first image may be a downsampled fine image with image detail. The second image captured of the defined subject in the first image can be obtained from a computer memory. The second image may be a coarse image. A target pixel in the second image can be selected. A target color distribution for a pixel window of the target pixel can then be computed. A source color distribution for a pixel window of a corresponding pixel in the first image can be computed using a computer processor. Further, a statistic of the target pixel can be determined with respect to the target color distribution. The source color in the source color distribution can be computed with the statistic. The target pixel color can then be replaced by the source color.
Abstract:
Embodiments are described for a system and method for generating a multi-resolution image pyramid. The method can include obtaining an image captured as a coarse image of a defined subject and a fine image of the defined subject. The fine image can be downsampled to create a temporary image. A further operation is applying a structure transfer operation to the temporary image to transfer color detail from the coarse image. The structure transfer takes place while retaining structural detail from the temporary image. A blending operation can be applied between the temporary image and the fine image to construct an intermediate image for at least one intermediate level in the multi-resolution image pyramid between the fine image and the coarse image.
Abstract:
Embodiments are described for a system and method for generating a multi-resolution image pyramid. The method can include obtaining an image captured as a coarse image of a defined subject and a fine image of the defined subject. The fine image can be downsampled to create a temporary image. A further operation is applying a structure transfer operation to the temporary image to transfer color detail from the coarse image. The structure transfer takes place while retaining structural detail from the temporary image. A blending operation can be applied between the temporary image and the fine image to construct an intermediate image for at least one intermediate level in the multi-resolution image pyramid between the fine image and the coarse image.
Abstract:
Embodiments are described for a method to generate an image that includes image structure detail captured from a first image and color from a second image. The first image of a defined subject can be obtained from a computer memory. The first image may be a downsampled fine image with image detail. The second image captured of the defined subject in the first image can be obtained from a computer memory. The second image may be a coarse image. A target pixel in the second image can be selected. A target color distribution for a pixel window of the target pixel can then be computed. A source color distribution for a pixel window of a corresponding pixel in the first image can be computed using a computer processor. Further, a statistic of the target pixel can be determined with respect to the target color distribution. The source color in the source color distribution can be computed with the statistic. The target pixel color can then be replaced by the source color.
Abstract:
Image-based localization technique embodiments are presented which provide a real-time approach for image-based video camera localization within large scenes that have been reconstructed offline using structure from motion or similar techniques. From monocular video, a precise 3D position and 3D orientation of the camera can be estimated on a frame by frame basis using only visual features.