Abstract:
A generally rectangular, planar electrical overcurrent sensing device having a top major surface and a bottom major surface includes a patterned metal foil conductor defined along the top major surface. The metal foil conductor has a first electrode region at one end region, a second electrode region at an opposite end region, and a current-concentrating region extending between the first electrode portion and the second electrode portion. The device further includes a planar sheet of a composition which exhibits PTC behavior and which comprises an organic polymer having a particulate conductive filler dispersed therewithin. The planar sheet has a first major surface in thermal contact with the bridging portion and has an opposite second major surface. A third patterned metal foil electrode secured to the second major surface of the planar PTC sheet is sized and aligned with the current-concentrating region such that heat generated in the current-concentrating region from electrical overcurrent flowing through the metal foil conductor is transferred to the planar sheet exhibiting PTC behavior and reduces a control current flowing to said third patterned metal foil electrode. An insulation layer may be imposed between the patterned metal foil conductor and the PTC sheet layer, and in such case the third patterned metal foil electrode is divided into two conductive areas separated by a gap aligned with the current-concentrating region, thereby providing a four terminal device. Tin pellets may be included in the current-concentrating region to reduce a melting/fracture temperature thereof below a flaming temperature of the organic polymer sheet forming the PTC layer.
Abstract:
An attachment ring is provided for attaching a shield of an electrical cable to a backshell. The attachment ring includes an annular body including a shape memory material that is heat recoverable. The body is configured to extend at least partially around the shield and a fitting of the backshell to hold the shield on the fitting in contact with the fitting. The body includes a single segment having a first end that includes a first connection member, and a second end that opposes the first end. The second end has a second connection member that is configured to be interlocked with the first connection member of the first end to connect the first and second ends together such that the single segment of the body defines a continuous ring.
Abstract:
A cable entry seal is provided for passing a cable through an opening within a structure. The cable entry seal includes a body extending a length. A passageway extends through the length of the body. The passageway is configured to receive the cable therethrough. The body includes a flange and a seal fitting extending outwardly from the flange along the length of the body. The seal fitting includes an exterior sealing surface. The cable entry seal includes a seal conduit having a sealing end surrounding and sealingly engaged with the exterior sealing surface of the seal fitting. The seal conduit is configured to surround the cable when the cable is received through the passageway of the body. The cable entry seal includes a lock ring connected to the body. The lock ring surrounds and sealingly engages with the sealing end of the seal conduit such that the sealing end is held between the exterior sealing surface of the seal fitting and the lock ring.
Abstract:
An electrical protection device for protecting an operating circuit from overcurrent and having relay contacts in series between an electrical power supply and an electrical power load and having a relay coil in parallel across the electrical power supply in an on state. The protection device includes a single relay package having a frame, the relay coil, an armature mechanically actuated from a normally closed contact position to a normally open contact position when the coil is energized, a bimetallic wiper mounted to the armature, a wiper contact mounted to the bimetallic wiper and a normally open contact, a diode connected in series with the relay coil and the normally open contact to pass coil energizing current to the coil from the electrical power supply during the on state and to prevent backflow of coil energizing current to reach the electrical power load when power is first applied to the coil, a first coil lead connected to the relay coil and a second coil lead connected to an anode of the diode, a first contact lead connected to the wiper contact, and a second contact lead connected to the normally open contact. In the on state the relay coil is connected to the electrical power supply through the diode and causes the wiper contact to connect to the normally open contact to connect the supply to the load through the first contact lead and the second contact lead. In the off state the bimetallic wiper responds to an overcurrent in the power supply path by changing shape and moving the wiper contact out of connection with the normally open contact thereby disconnecting the load from the supply.
Abstract:
An electrical protection system on a power distribution side includes a control element of a series combination of a PTC device thermally coupled with a resistive device, and a relay coil coupled with relay contacts. If the relay contacts are open the only way in which they can be closed is by supplying current to the relay coil through a resistance-capacitance network. An electronic control module on a control side includes an electronic control module for monitoring a voltage present in the system, and a switch for opening a current path feeding the system upon detection of a fault condition. An indicator indicates presence of a sensed fault condition.
Abstract:
An attachment ring is provided for attaching a shield of an electrical cable to a backshell. The attachment ring includes an annular body including a shape memory material that is heat recoverable. The body is configured to extend at least partially around the shield and a fitting of the backshell to hold the shield on the fitting in contact with the fitting. The body includes a single segment having a first end that includes a first connection member, and a second end that opposes the first end. The second end has a second connection member that is configured to be interlocked with the first connection member of the first end to connect the first and second ends together such that the single segment of the body defines a continuous ring.
Abstract:
An attachment ring is provided for attaching a shield of an electrical cable to a backshell. The attachment ring includes an annular body including a shape memory material that is heat recoverable. The body is configured to extend at least partially around the shield and a fitting of the backshell to hold the shield on the fitting in contact with the fitting. The body includes a first segment including an end having a connection member. The body also includes a second segment that is discrete from the first segment. The second segment includes an end having a connection feature. The connection feature of the second segment is interlocked with the connection member of the first segment to connect the first and second segments together at the ends such that the first and second segments define at least a portion of a length of the body.
Abstract:
A backshell for an electrical assembly is provided. The backshell includes a shield termination body having a connector end and a relief end. The connector end is configured to join to a cable end of an electrical connector. A face of the connector end is oriented at an angle with respect to a face of the relief end. A strain relief is provided having a shield end and a cable clamp end. A face of the shield end is oriented at an angle with respect to a face of the cable clamp end. The shield end is rotatably coupled to the relief end of the shield termination body. The shield end of the strain relief is rotatable with respect to the relief end of the shield termination body so that the face of the cable clamp end of the strain relief is positionable at variable angles with respect to the face of the connector end of the shield termination body.
Abstract:
A cable entry seal is provided for passing a cable through an opening within a structure. The cable entry seal includes a body extending a length. A passageway extends through the length of the body. The passageway is configured to receive the cable therethrough. The body includes a flange and a seal fitting extending outwardly from the flange along the length of the body. The seal fitting includes an exterior sealing surface. The cable entry seal includes a seal conduit having a sealing end surrounding and sealingly engaged with the exterior sealing surface of the seal fitting. The seal conduit is configured to surround the cable when the cable is received through the passageway of the body. The cable entry seal includes a lock ring connected to the body. The lock ring surrounds and sealingly engages with the sealing end of the seal conduit such that the sealing end is held between the exterior sealing surface of the seal fitting and the lock ring.
Abstract:
An electrical device which contains a first electrode, a second electrode, a third electrode, a first resistor which is connected in series between the first and second electrodes, and a second resistor which (i) is thermally coupled to the first resistor, (ii) exhibits anomalous resistance/temperature behavior, and (iii) is connected in series between the first and third electrodes. The device has at least one of the following characteristics: (a) the first resistor and at least one of the first and second electrodes are formed from a single piece of metal; (b) the device has a generally planar configuration and comprises at least one electrical connector connected to one of the first, second, and third electrodes, whereby the first, second and third electrodes or connectors secured thereto can be secured directly to a circuit board with the device parallel to the circuit board; and (c) the second resistor is a planar sheet of a material which exhibits anomalous resistance/temperature behavior, the sheet having a first major surface to which the first and second electrodes are attached and a second major surface to which the third electrode is attached. The device can be prepared from an electrical assembly which can be divided into a plurality of devices.