一种基于神经网络自学习的SPR2失效卡片拓展方法

    公开(公告)号:CN118862699B

    公开(公告)日:2025-02-11

    申请号:CN202411341043.6

    申请日:2024-09-25

    Abstract: 本发明公开了一种基于神经网络自学习的SPR2失效卡片拓展方法,包括以下操作方法:试制FDS或SPR接头;建立数据库,根据后续机器学习的输入与输出设置,进行针对性的数据库建立;建立人工神经网络通路;改善后的机器学习架构搭建,先判断待预测数据集的失效形式,并输出,随后采用相对应的失效数据子集进行后续的预测与运算;读取数据并输出SPR2参数通过针对拉剪工况,调整参数值;自动调节个别参数;整体模式使用方法,直接输入待测的FDS的材料新组合,最后可以直接输出失效形式、预测的力位移曲线,以及新的材料卡片参数值,该发明涉及热熔自攻丝连接技术仿真领域,是一种基于神经网络自学习的高效高质适用于热熔自攻丝与自冲铆的SPR2失效卡片拓展方法。

Patent Agency Ranking