一种钴掺杂纳米硫化锌的氧还原电催化材料制备方法

    公开(公告)号:CN117374296A

    公开(公告)日:2024-01-09

    申请号:CN202311386358.8

    申请日:2023-10-24

    Abstract: 本发明涉及电催化材料技术领域,揭露了一种钴掺杂纳米硫化锌的氧还原电催化材料制备方法及装置,包括:将氨基噻唑、无水醋酸锌及预设浓度的六水硝酸钴溶液置于研磨皿中进行混合研磨并干燥,得到电催化前驱体,将电催化前驱体研磨后置于瓷舟内并利用管式炉对所述待热解前驱体进行热解,得到热解产物,利用盐酸对所述热解产物进行刻蚀,得到热解刻蚀产物,对热解刻蚀产物进行洗涤及过滤,得到初始氧还原电催化材料,将所述初始电催化产物进行干燥,得到目标氧还原电催化材料。本发明主要目的在于解决当前Pt/C催化剂存在价格高昂且催化性能较低的问题。

    一种石墨烯包覆合金电催化剂的制备及海水电解制氢方法

    公开(公告)号:CN118147695A

    公开(公告)日:2024-06-07

    申请号:CN202410321010.9

    申请日:2024-03-20

    Abstract: 本发明涉及海水电解制氢领域,揭露了一种石墨烯包覆合金电催化剂的制备及海水电解制氢方法,包括导入钼酸钠至六水氯化镍溶液,得到反应液,将反应液导入马弗炉并保温,得到初始产物,清洁及干燥初始产物,得到前驱体,研磨前驱体并导入至管式炉,在气体环境下以拟定温升速度加热至第二反应温度并保温后,得到还原产物,冷却还原产物,得到待沉积材料,利用化学气相沉积法沉积待沉积材料,得到催化剂,根据催化剂获取电催化剂,基于电催化剂获取质量检测报告,根据三电极体系条件及电催化剂执行海水电解制氢模拟试验操作,得到电催化性能检测报告。本发明主要目的在于解决制造低成本且性能更优的海水电解制氢的催化剂的问题。

    基于主动学习和符号回归的超导体筛选方法、装置及设备

    公开(公告)号:CN115035966B

    公开(公告)日:2022-11-04

    申请号:CN202210953283.6

    申请日:2022-08-09

    Abstract: 本发明涉及人工智能技术,揭露了一种基于主动学习和符号回归的超导体筛选方法,包括:对材料数据进行多类型联合数据清洗,得到有效数据,识别有效数据的数值计算特征、化学特征、空间群特征及掺杂特征;将数值计算特征、化学特征、空间群特征及掺杂特征进行关联度筛选,得到特征子集;利用预先训练的特征分析决策树模型根据特征子集对有效数据中每种化合物的超导能力进行分析,并选取符合预设条件的化合物为潜在高温超导体,其中,特征分析决策树模型是通过主动学习及符号回归的方式预先训练得到的回归模型。本发明还提出一种基于主动学习和符号回归的超导体筛选装置及设备。本发明可以提高解析高温超导材料筛选的精确度。

    基于主动学习和符号回归的超导体筛选方法、装置及设备

    公开(公告)号:CN115035966A

    公开(公告)日:2022-09-09

    申请号:CN202210953283.6

    申请日:2022-08-09

    Abstract: 本发明涉及人工智能技术,揭露了一种基于主动学习和符号回归的超导体筛选方法,包括:对材料数据进行多类型联合数据清洗,得到有效数据,识别有效数据的数值计算特征、化学特征、空间群特征及掺杂特征;将数值计算特征、化学特征、空间群特征及掺杂特征进行关联度筛选,得到特征子集;利用预先训练的特征分析决策树模型根据特征子集对有效数据中每种化合物的超导能力进行分析,并选取符合预设条件的化合物为潜在高温超导体,其中,特征分析决策树模型是通过主动学习及符号回归的方式预先训练得到的回归模型。本发明还提出一种基于主动学习和符号回归的超导体筛选装置及设备。本发明可以提高解析高温超导材料筛选的精确度。

Patent Agency Ranking